• Title/Summary/Keyword: measure distortion

Search Result 270, Processing Time 0.026 seconds

Evaluation of Quality Improvement Achieved by Deterministic Image Restoration methods on the Pan-Sharpening of High Resolution Satellite Image (결정론적 영상복원과정을 이용한 고해상도 위성영상 융합 품질 개선정도 평가)

  • Byun, Young-Gi;Chae, Tae-Byeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • High resolution Pan-sharpening technique is becoming increasingly important in the field of remote sensing image analysis as an essential image processing to improve the spatial resolution of original multispectral image. The general scheme of pan-sharpening technique consists of upsampling process of multispectral image and high-pass detail injection process using the panchromatic image. The upsampling process, however, brings about image blurring, and this lead to spectral distortion in the pan-sharpening process. In order to solve this problem, this paper presents a new method that adopts image restoration techniques based on optimization theory in the pan-sharpening process, and evaluates its efficiency and application possibility. In order to evaluate the effect of image restoration techniques on the pansharpening process, the result obtained using the existing method that used bicubic interpolation were compared visually and quantitatively with the results obtained using image restoration techniques. The quantitative comparison was done using some spectral distortion measures for use to evaluate the quality of pan-sharpened image.

Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Theanh
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.917-933
    • /
    • 2016
  • In a prestressed concrete bridge, the magnitude of the prestress force (PF) decreases with time. This unexpected loss can cause failure of a bridge which makes prestress force identification (PFI) critical to evaluate bridge safety. However, it has been difficult to identify the PF non-destructively. Although some research has shown the feasibility of vibration based methods in PFI, the requirement of having a determinate exciting force in these methods hinders applications onto in-service bridges. Ideally, it will be efficient if the normal traffic could be treated as an excitation, but the load caused by vehicles is difficult to measure. Hence it prompts the need to investigate whether PF and moving load could be identified together. This paper presents a synergic identification method to determine PF and moving load applied on a simply supported prestressed concrete beam via the dynamic responses caused by this unknown moving load. This method consists of three parts: (i) the PF is transformed into an external pseudo-load localized in each beam element via virtual distortion method (VDM); (ii) then these pseudo-loads are identified simultaneously with the moving load via Duhamel Integral; (iii) the time consuming problem during the inversion of Duhamel Integral is overcome by the load-shape function (LSF). The method is examined against different cases of PFs, vehicle speeds and noise levels by means of simulations. Results show that this method attains a good degree of accuracy and efficiency, as well as robustness to noise.

Verification of Stereotactic Target Point Achieved by Acquisition of MR Image in Actual Treatment Position of Radiosurgery (정위적 방사선 수술시 치료위치에서의 정위적 표적점 확인을 통한 자기공명영상 획득의 정확도 연구)

  • Kim Sang Hwan;Ryu Ji Ok;Kim Baek Kyu;Kim Yong ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.43-48
    • /
    • 1999
  • Purpose : For practical application of the MR image for stereotactic radiosurgery, the target point achieved by acquisition of MR image in a relatively homogeneous phantom has to agree with the actual isocenter of irradiation in real radiosurgery and the amount of distortion of the MR image should be known. Materials and Methods : A dosimetric film with a random target point was inserted into a radish vertically and horizontally on axis Z and they were fixed with a headring. After image acquisition by stereotactic radiosurgery planning system, we achieved stereotactic coordinate of the target point and examined irradiation using the coordinate acquired as isocenter. After the irradiation, the film in the radish was developed and processed and the degree of coincidence between the target point marked on the film and the center of the radiation distribution. In order to measure the degree of distortion of the MR image in a different way, an acryl phantom was made and punctures were made at intervals of 1 cm and a drop of oil was dropped into it. Then, it was inserted into the radish vertically and horizontally on axis Z to acquire the MR image. Each coordinate was achieved and the estimation of distortion of MR image was made both in vertical and horizontal directions Results : The film from the radio was developed and for the one inserted vertically on axis Z, there was a good coincidence in the discrepancy between the target point marked on the film and the center of the radiation distribution. For the one inserted horizontally, the discrepancy between them was under 0.5 mm. As a result of estimating distortion of MR image using acryl, the discrepancy was under 0.45 mm in the case of the phantom inserted vertically on axis Z, and that of the one inserted horizontally was 1.4 mm. Conclusion : We were able to confirm good coincidence in homogeneous phantom in actual treatment position of radiosurgery using the MR image and the discrepancy measured in the analysis of distortion of the MR image did not exceed the permissible level. Therefore, it was evident the system of the hospital is suitable for radiosurgery using MR image.

  • PDF

Variation of Dose due to the Wound Electrode of Ionization Chamber (굴곡이 있는 전리함 집전극에 기인한 선량 변화)

  • Lee, Byung-Koo;Kim, Jung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.203-209
    • /
    • 2008
  • Nowadays the risk of radiation is getting more serious, so we must know the exact dose that was irradiated, Because very high radiation dose is used in radiation therapy field. We used the ionization chamber which measure the radiation dose in this study. We tried to know the incorrect result from the distortion of geometric structure of ionization chamber and we studied how to find the distortion of geometric structure of ionization chamber. We used a radio fluoroscopy to find the wound degree of electrode of ionization chamber and a reconstructed 3D CT image to analyze the wound degree of electrode quantitatively. we measured degree of distortion by comparing with absorbed dose of normal electrode and wound electrode. The comparative result is not absolute dosimetry at specific point but relative dosimetry between thats. We measured 4 MV, 10MV photon with same absorbed dose and dose rate. The degree of distortion of wound electrode was totally $5.5{\sim}7.2%$, and there was no difference between two energies. The variation induced from radiation dose to be irradiated and dose rate, and the degree of distortion from wound direction also was almost similar value. We could find that the geometric structure of ionization chamber that can influence a basic measurement of radiation dose can be changed by old usage and inattention of management in this study, especially winding of electrode can be happened, in radiation therapy field, It is very important to keep precise radiation dose quantitatively.

Evaluation of Quantitative Image Quality using Frequency and Parameters in the Ultrasound Image (초음파영상에서 주파수와 파라미터를 이용한 정량적 영상평가)

  • Kim, Changsoo;Kang, Se Sik;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.247-253
    • /
    • 2016
  • Ultrasound devices diagnose many disease, which is widely used, can not be standardized quantitative evaluated in order to evaluate sonography image of quality. Therefore, in this papers, aims to get correct image in order to accurate diagnosis by figuring out the appropriate parameter based on each target by measuring distortion which results in the analyzation of the sensitivity of SNR and the histogram of signal by manipulating parameter of 8 mm target in ATS-539 multipurpose phantom. Equipment using Acuson sequoia 512, convex probe and utilizes multi-objective phantom. experiment method is that first you put the phantom on the flat and acquire 85 sheets of image, changing frequency(2,3,4 MHz, harmonic 3, 4, 4.5 MHz), Focus(2, 4, 6 unit), and Dynamic Range(58, 68, 78, 88, 98) for a 8 mm structure. through the Image J program. The sensitivity angle of 8mm target through Image J program is gauged by each separate target SNR and the distorted angle subtract and measure Histogram of background from Histogram of signal and take top 40% from the given result value above. According to parameter variation we found out proper parameter by acquiring SNR of sensitivity and distortion data for aspect of transition. The more this findings have Focus, the lower distortion value and at 4 MHz frequency this result have high SNR and low distortion value. Dynamic Range got an appropriate image on 88 and 98. It is considered on the basis of the experimental data, the probability of disease diagnosis will get higher.

Image Distortion Compensation for Improved Gait Recognition (보행 인식 시스템 성능 개선을 위한 영상 왜곡 보정 기법)

  • Jeon, Ji-Hye;Kim, Dae-Hee;Yang, Yoon-Gi;Paik, Joon-Ki;Lee, Chang-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.97-107
    • /
    • 2009
  • In image-based gait recognition systems, physical factors, such as the camera angle and the lens distortion, and environmental factors such as illumination determines the performance of recognition. In this paper we present a robust gait recognition method by compensating various types of image distortions. The proposed method is compared with existing gait recognition algorithm with consideration of both physical and environmental distortion factors in the input image. More specifically, we first present an efficient compensation algorithm of image distortion by using the projective transform, and test the feasibility of the proposed algorithm by comparing the recognition performances with and without the compensation process. Proposed method gives universal gait data which is invariant to both distance and environment. Gained data improved gait recognition rate about 41.5% in indoor image and about 55.5% in outdoor image. Proposed method can be used effectively in database(DB) construction, searching and tracking of specific objects.

Perceptual and Adaptive Quantization of Line Spectral Frequency Parameters (선 스펙트럼 주파수의 청각 적응 부호화)

  • 한우진;김은경;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.68-77
    • /
    • 2000
  • Line special frequency (LSF) parameters have been widely used in low bit-rate speech coding due to their efficiency for representing the short-time speech spectrum. In this paper, a new distance measure based on the masking properties of human ear is proposed for quantizing LSF parameters whereas most conventional quantization methods are based on the weighted Euclidean distance measure. The proposed method derives the perceptual distance measure from the definition of noise-to-mask ratio (NMR) which has high correspondence with the actual distortion received in the human ear and uses it for quantizing LSF parameters. In addition, we propose an adaptive bit allocation scheme, which allocates minimal bits to LSF parameters maintaining the perceptual transparency of given speech frame for reducing the average bit-rates. For the performance evaluation, we has shown the ratio of perceptually transparent frames and the corresponding average bit-rates for the conventional and proposed methods. By jointly combining the proposed distance measure and adaptive bit allocation scheme, the proposed system requires only 770 bps for obtaining 95.5% perceptually transparent frames, while the conventional systems produce 89.9% at even 1800 bps.

  • PDF

Recognition of Korean Text in Outdoor Signboard Images Using Directional Feature and Fisher Measure (방향성분 특징과 Fisher Measure를 이용한 간판영상 한글인식)

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jung;Lee, Myung-Eun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.239-246
    • /
    • 2009
  • In this paper, we propose a Korean character recognition method from outboard signboard images. We have chosen 808 classes of Korean characters by an analysis of frequencies of appearance in a dictionary of signboard names. The proposed method mainly consists of three steps: feature extraction, rough classification, and coarse classification. The first step is to extract a nonlinear directional segments feature, which is immune to the distortion of character shapes. The second step computes an ordered set of 10 recognition candidates using a minimum distance classifier. The last step reorders the recognition candidates using a Fisher discriminant measure. As experimental results, the recognition accuracy is 80.45% for the first choice, and 93.51% for the top five choices.

Automatic Counting of Rice Plant Numbers After Transplanting Using Low Altitude UAV Images

  • Reza, Md Nasim;Na, In Seop;Lee, Kyeong-Hwan
    • International Journal of Contents
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Rice plant numbers and density are key factors for yield and quality of rice grains. Precise and properly estimated rice plant numbers and density can assure high yield from rice fields. The main objective of this study was to automatically detect and count rice plants using images of usual field condition from an unmanned aerial vehicle (UAV). We proposed an automatic image processing method based on morphological operation and boundaries of the connected component to count rice plant numbers after transplanting. We converted RGB images to binary images and applied adaptive median filter to remove distortion and noises. Then we applied a morphological operation to the binary image and draw boundaries to the connected component to count rice plants using those images. The result reveals the algorithm can conduct a performance of 89% by the F-measure, corresponding to a Precision of 87% and a Recall of 91%. The best fit image gives a performance of 93% by the F-measure, corresponding to a Precision of 91% and a Recall of 96%. Comparison between the numbers of rice plants detected and counted by the naked eye and the numbers of rice plants found by the proposed method provided viable and acceptable results. The $R^2$ value was approximately 0.893.

The Performance Analysis and Design of Selling Spectacle Lenses in Domestic Market (국내 시판 안경렌즈의 성능 분석 및 설계)

  • Kim, Se-Jin;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.355-360
    • /
    • 2010
  • Purpose: Analysis performance for spectacle lens which sales in domestic market and optimization design a spectacle lens which is corrected aberration. Methods: Measured center thickness, radius and aspherical surface coefficient for spherical and aspherical lenses which were ${\pm}$5.00D. Refractive index for every lens was 1.6 and they came from 4 different companies. I used 3 types of equipment to measure lenses. ID-F150 (Mitutoyo) : Center Thickness, FOCOVISION (SR-2, Automation Robotics) : Radius, PGI 1240S (Taylor Hobson) : Aspherical surface coefficient. Designed a lens which had 27 mm of distance from lens rear surface to center of eye, 4 mm of pupil diameter and small aberration on center vision $30^{\circ}C$. To shorten axial distance compared with the measured lens rise merits for cosmetic. Lens Design tool was CODE V (Optical Research Associates). Results: -5.00D aspherical lens had somewhat high astigmatism and distortion compared with the spherical lens. But it had a merit for cosmetic because of short axial height and decrease edge thickness. Improved a performance of distortion and ascertain merits for cosmetic due to short axial height and decrease edge thickness same as (-) lens in case of +5.00 aspherical lens. Though an optimization process front surface aspherical lens had a good performance for astigmatism and distortion and the merit for beauty compared with measured spherical lens. Conclusions: Design trend for domestic aspherical lens is decrease axial height and thickness to increase a merit for cosmetic not but increase performance of aberration. From design theory for optimization design front surface aspherical spectacle lens which has improved performance of aberration and merit for cosmetic at the same time compared with the measured lens. Expect an improved performance from design back aspherical lens compared with front aspherical lens.