• Title/Summary/Keyword: mean squared error

Search Result 717, Processing Time 0.025 seconds

Simplified Near Optimal Downlink Beamforming Schemes in Multi-Cell Environment (다중 셀 환경에서 적은 복잡도를 갖는 준 최적 하향 빔형성)

  • Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.764-773
    • /
    • 2011
  • Despite enormous performance gain with multi-antenna transmission in the single cell environment, its gain diminishes out in the multi-cell environment due to interference. It is also very hard to solve the efficient downlink beamforming with low complexity in multi-cell environment. First, this paper shows that the asymptotically sum rate optimal downlink beamformings at low and high SNR are maximum ratio transmit (MRT) and zero forcing (ZF) beamforming in the multi-cell system, respectively. Secondly, exploiting the asymptotically optimal downlink beamforming, we develop simple two types of near optimal downlink beamforming schemes having the form of minimum mean squared error (MMSE) beamforming obtained from the dual uplink problem. For each type, three different subclasses are also considered depending on the computational complexity. The simulation results show that the proposed near optimum algorithms provide the trade-off between the complexity and the performance.

Statistical Verification of Precipitation Forecasts from MM5 for Heavy Snowfall Events in Yeongdong Region (영동대설 사례에 대한 MM5 강수량 모의의 통계적 검증)

  • Lee, Jeong-Soon;Kwon, Tae-Yong;Kim, Deok-Rae
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.125-139
    • /
    • 2006
  • Precipitation forecasts from MM5 have been verified for the period 1989-2001 over Yeongdong region to show a tendency of model forecast. We select 57 events which are related with the heavy snowfall in Yeongdong region. They are classified into three precipitation types; mountain type, cold-coastal type, and warm type. The threat score (TS), the probability of detection (POD), and the false-alarm rate (FAR) are computed for categorical verification and the mean squared error (MSE) is also computed for scalar accuracy measures. In the case of POD, warm, mountain, and cold-coastal precipitation type are 0.71, 0.69, and 0.55 in turn, respectively. In aspect of quantitative verification, mountain and cold-coastal type are relatively well matched between forecasts and observations, while for warm type MM5 tends to overestimate precipitation. There are 12 events for the POD below 0.2, mountain, cold-coastal, warm type are 2, 7, 3 events, respectively. Most of their precipitation are distributed over the East Sea nearby Yeongdong region. These events are also shown when there are no or very weak easterlies in the lower troposphere. Even in the case that we use high resolution sea surface temperature (about 18 km) for the boundary condition, there are not much changes in the wind direction to compare that with low resolution sea surface temperature (about 100 km).

Naval Vessel Spare Parts Demand Forecasting Using Data Mining (데이터마이닝을 활용한 해군함정 수리부속 수요예측)

  • Yoon, Hyunmin;Kim, Suhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.253-259
    • /
    • 2017
  • Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy). Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need accurate demand forecasts for spare parts. We attempted to find consumption pattern using data mining techniques. First we gathered a large amount of component consumption data through the DELIIS (Defense Logistics Intergrated Information System). Through data collection, we obtained 42 variables such as annual consumption quantity, ASL selection quantity, order-relase ratio. The objective variable is the quantity of spare parts purchased in f-year and MSE (Mean squared error) is used as the predictive power measure. To construct an optimal demand forecasting model, regression tree model, randomforest model, neural network model, and linear regression model were used as data mining techniques. The open software R was used for model construction. The results show that randomforest model is the best value of MSE. The important variables utilized in all models are consumption quantity, ASL selection quantity and order-release rate. The data related to the demand forecast of spare parts in the DELIIS was collected and the demand for the spare parts was estimated by using the data mining technique. Our approach shows improved performance in demand forecasting with higher accuracy then previous work. Also data mining can be used to identify variables that are related to demand forecasting.

Smoothing parameter selection in semi-supervised learning (준지도 학습의 모수 선택에 관한 연구)

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.993-1000
    • /
    • 2016
  • Semi-supervised learning makes it easy to use an unlabeled data in the supervised learning such as classification. Applying the semi-supervised learning on the regression analysis, we propose two methods for a better regression function estimation. The proposed methods have been assumed different marginal densities of independent variables and different smoothing parameters in unlabeled and labeled data. We shows that the overfitted pilot estimator should be used to achieve the fastest convergence rate and unlabeled data may help to improve the convergence rate with well estimated smoothing parameters. We also find the conditions of smoothing parameters to achieve optimal convergence rate.

A Study on the Postprocessing of Channel Estimates in LTE System (LTE 시스템 채널 추정치의 후처리 기법 연구)

  • Yoo, Kyung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.205-213
    • /
    • 2011
  • The Long Term Evolution (LTE) system is designed to provide a high quality data service for fast moving mobile users. It is based on the Orthogonal Frequency Division Multiplexing (OFDM) and relies its channel estimation on the training samples which are systematically built within the transmitting data. Either a preamble or a lattice type is used for the distribution of training samples and the latter suits better for the multipath fading channel environment whose channel frequency response (CFR) fluctuates rapidly with time. In the lattice-type structure, the estimation of the CFR makes use of the least squares estimate (LSE) for each pilot samples, followed by an interpolation both in time-and in frequency-domain to fill up the channel estimates for subcarriers corresponding to data samples. All interpolation schemes should rely on the pilot estimates only, and thus, their performances are bounded by the quality of pilot estimates. However, the additive noise give rise to high fluctuation on the pilot estimates, especially in a communication environment with low signal-to-noise ratio. These high fluctuations could be monitored in the alternating high values of the first forward differences (FFD) between pilot estimates. In this paper, we analyzed statistically those FFD values and propose a postprocessing algorithm to suppress high fluctuations in the noisy pilot estimates. The proposed method is based on a localized adaptive moving-average filtering. The performance of the proposed technique is verified on a multipath environment suggested on a 3GPP LTE specification. It is shown that the mean-squared error (MSE) between the actual CFR and pilot estimates could be reduced up to 68% from the noisy pilot estimates.

A Study on the Performance improvement of TEA adaptive equalizer using Precoding (사전 부호화를 이용한 TEA 적응 등화기의 성능 개선에 관한 연구)

  • Lim Seung-Gag
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.369-374
    • /
    • 2006
  • This paper related with the performance improvement of adaptive equalizer that is a based on the tricepstrum eqalization algorithm by using the received signal. Adaptive equalizer used for the improvement of communication performance, like as high speed, maintain of synchronization, BER, at the receive side in the environment of communication channel of the presence of the aditive noise, phase distortion and frequency selective fading, mainly. It's characteristics are nearly same as the inverse characterstics of the communication channel. In this paper, the TEA algorithm using the HOS and the 16-QAM which is 2-dimensional signaling method for being considered signal was used. For the precoding of 16-QAM singnal in the assignment of the signal costellation, Gray code was used, and the improvement of performance was gained by computer simulation in the residual intersymbol interence and mean squared error which is representive measurement of adaptive equalizer.

Performance Evaluation of a Cellular OFDM System with Heterogeneous MIMO Users (이질적인 MIMO 사용자들을 가진 셀룰러 OFDM 시스템의 성능 분석)

  • Oh Joon;Hwang Hyeon chyeol;Lim Jong kyoung;Kim Duk kyung;Kwak Kyung sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.296-303
    • /
    • 2005
  • In this paper, we evaluate system performance and propose signal separation and detection when a user with one antenna shares the co-channel together with a user with two space-time coded antennas. The proposed technique can identify co-channel users by an interference cancellation method and detect the signals by maximum likelihood method. Simulation results show that the shortcoming of the Minimum Mean-Squared Error technique which can be applied two users with the same number of antenna but can not applied for heterogeneous MIMO users with the different number of antennas. Also, we apply the proposed scheme to OFDM system and evaluate the system performance. By simulations, we identify that the performance of the proposed system is the same as that of the existing single antenna users and improves the performance of the two-antenna MIMO users.

Comparison of Methods of Selecting the Threshold of Partial Duration Series for GPD Model (GPD 모형 산정을 위한 부분시계열 자료의 임계값 산정방법 비교)

  • Um, Myoung-Jin;Cho, Won-Cheol;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.527-544
    • /
    • 2008
  • Generalized Pareto distribution (GPD) is frequently applied in hydrologic extreme value analysis. The main objective of statistics of extremes is the prediction of rare events, and the primary problem has been the estimation of the threshold and the exceedances which were difficult without an accurate method of calculation. In this paper, to obtain the threshold or the exceedances, four methods were considered. For this comparison a GPD model was used to estimate parameters and quantiles for the seven durations (1, 2, 3, 6, 12, 18 and 24 hours) and the ten return periods (2, 3, 5, 10, 20, 30, 50, 70, 80 and 100 years). The parameters and quantiles of the three-parameter generalized Pareto distribution were estimated with three methods (MOM, ML and PWM). To estimate the degree of fit, three methods (K-S, CVM and A-D test) were performed and the relative root mean squared error (RRMSE) was calculated for a Monte Carlo generated sample. Then the performance of these methods were compared with the objective of identifying the best method from their number.

Panel data analysis with regression trees (회귀나무 모형을 이용한 패널데이터 분석)

  • Chang, Youngjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1253-1262
    • /
    • 2014
  • Regression tree is a tree-structured solution in which a simple regression model is fitted to the data in each node made by recursive partitioning of predictor space. There have been many efforts to apply tree algorithms to various regression problems like logistic regression and quantile regression. Recently, algorithms have been expanded to the panel data analysis such as RE-EM algorithm by Sela and Simonoff (2012), and extension of GUIDE by Loh and Zheng (2013). The algorithms are briefly introduced and prediction accuracy of three methods are compared in this paper. In general, RE-EM shows good prediction accuracy with least MSE's in the simulation study. A RE-EM tree fitted to business survey index (BSI) panel data shows that sales BSI is the main factor which affects business entrepreneurs' economic sentiment. The economic sentiment BSI of non-manufacturing industries is higher than that of manufacturing ones among the relatively high sales group.

A Image Post-processing Method using Modified MSDS (수정된 MSDS를 이용한 영상의 후처리 기법)

  • 김은석;채병조;오승준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1480-1489
    • /
    • 1999
  • In this paper, we propose a new post-processing method which can solve a problem of MSDS(Mean Squared Difference of Slope) method. Using that method the blocking artifacts can significantly be reduced without any restriction, which is a major drawback of block-based DCT compression method. In this approach, the OSLD(Overlapped Sub-Laplacian Distribution) of dequantized block boundary pixel difference values is defined and used to categorize each block of an image into one of four types. Those types are also classified into one of two classes: an edge and a non-edge classes. A slope across the block boundary is used to quantify discontinuity of the image. If an absolute estimated quantization error value of a DCT coefficient is greater than the corresponding quantization step size, it is saturated to the step size in the edge class. The proposed post-processing method can improve not only the PSNR value up to 0.1~O.3 dB but visual quality without any constraints determined by ad-hoc manner.

  • PDF