• 제목/요약/키워드: mean squared error

검색결과 717건 처리시간 0.025초

통합공정관리에서 출력변수와 입력변수를 탐지하는 절차의 비교 (Comparison of monitoring the output variable and the input variable in the integrated process control)

  • 이재헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권4호
    • /
    • pp.679-690
    • /
    • 2011
  • 통계적 공정관리 (statistical process control; SPC)와 자동공정관리 (automatic process control; APC)는 공정의 품질을 향상시키기 위하여 가장 널리 사용하는 방법이다. 이 두 종류의 관리절차는 서로 독립적으로 적용되고 연구되어져 왔지만, 현대의 생산 공정은 공정 자체가 복잡하고 혼합된 양상을 나타내기 때문에 두 관리절차를 병행하여 사용함으로써 관리효과를 증대시킬 수 있게 된다. 이와 같이 수정과 탐지를 동시에 사용하여 공정을 좀 더 효율적으로 관리하고자 하는 절차를 통합 공정관리 (integrated process control; IPC)라고 한다. IPC의 기본절차는 잡음이 내재하는 공정에 대하여 수정조치를 취하고, 이러한 수정활동 중 공정에 이상원인이 발생했는지 관리도를 통하여 이를 탐지하는 것이다. APC로 조정된 공정을 관리할 경우 일반적으로 출력변수를 관리통계량으로 사용하고 있으나, 입력변수를 관리통계량으로 사용하는 연구 결과들도 있다. 이 논문에서는 누적이동평균(integrated moving average; IMA) (1,1) 잡음모형과 최소평균제곱오차 (minimum mean square error; MMSE) 수정을 가정할 경우, 출력변수, 입력변수, 그리고 출력변수와 입력변수의 정보를 모두 이용하는, 즉 출력과 입력변수의 차이변수를 사용하는 절차의 효율을 비교하고 있다.

기후변화에 따른 벚꽃 개화일의 시공간 변이 (Climate Change Impact on the Flowering Season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100)

  • 윤진일
    • 한국농림기상학회지
    • /
    • 제8권2호
    • /
    • pp.68-76
    • /
    • 2006
  • A thermal time-based two-step phenological model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model calculations using daily temperature data at 18 synoptic stations during 1955-2004 were compared with the observed blooming dates and resulted in 3.9 days mean absolute error, 5.1 days root mean squared error, and a correlation coefficient of 0.86. Considering that the phonology observation has never been fully standardized in Korea, this result seems reasonable. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological years 1941-1970 and 1971-2000 from observations at 56 synoptic stations by using a spatial interpolation scheme for correcting urban heat island effect as well as elevation effect. A 25km-resolution temperature data set covering the Korean Peninsula, prepared by the Meteorological Research Institute of Korea Meteorological Administration under the condition of Inter-governmental Panel on Climate Change-Special Report on Emission Scenarios A2, was converted to 270 m gridded data for the climatological years 2011-2040, 2041-2070 and 2071-2100. The model was run by the gridded daily maximum and minimum temperature data sets, each representing a climatological normal year for 1941-1970, 1971-2000, 2011-2040, 2041-2070, and 2071-2100. According to the model calculation, the spatially averaged flowering date for the 1971-2000 normal is shorter than that for 1941-1970 by 5.2 days. Compared with the current normal (1971-2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011-2040, 2041-2070, and 2071-2100, respectively. Southern coastal areas might experience springs with incomplete or even no Japanese cherry flowering caused by insufficient chilling for breaking bud dormancy.

천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증 (The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification)

  • 김민상;박명숙
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1317-1328
    • /
    • 2021
  • 본 연구는 천리안 해양위성 2호(GOCI-II)를 활용하여 개발된 해무 탐지 알고리즘의 초기 결과에 대한 분석을 수행하였다. GOCI-II 해무 탐지 성능을 확인하기 위해 1호와 2호가 중복으로 관측한 2020년 10월-2021년 3월 사이에 발생한 해무 사례에 대해 광학적 특성 분석을 실시하였다. 해무 탐지 알고리즘에 입력자료로 사용되는 412 nm 밴드 레일리 산란 보정 반사도(Rayleigh-corrected reflectance; Rrc)와 정규화된 국소 표준 편차(Normalized Local Standard Deviation; NLSD)를 GOCI, GOCI-II 자료를 시공간 일치시킨 뒤 분석한 결과 412 nm 밴드 레일리 Rrc의 경우 0.01의 평균 제곱근 오차 (Root Mean Squared Error; RMSE)와 0.998의 상관계수(correlation coefficient)을 나타내고, NLSD의 경우 0.007의 RMSE, 0.798의 correlation을 나타낸다. 해무와 구름이 갖는 광학적 특성을 분석하기 위해 천리안 해양위성 2호의 밴드 별 Rrc 값을 확인하였다. 구름의 경우 넓은 영역에서 높은 반사도를 보인 반면, 해무의 경우 모든 밴드에서 구름에 비해 상대적으로 반사도가 낮고 좁은 영역에 분포한다. 실제 해무 사례에 대해 GOCI와 GOCI-II 해무 탐지 알고리즘을 비교한 결과 전반적인 해무 탐지 성능은 크게 차이가 없으나 높아진 공간 해상도의 영향으로 해무 경계면에서 공간적으로 더 세밀한 탐지가 가능했다. 종관기상관측소 시정계 자료와 비교 분석하여 초기 자료에 대한 신뢰도를 조사하였다. 추후 충분한 샘플 확보로 인한 안정적인 성능 검증, 실시간 구름 정보 교체를 통한 후처리 과정 개선, 에어로졸 자료 추가로 해무 오탐지 감소를 통해 해무 탐지 알고리즘의 성능 향상이 기대된다.

앙상블 머신러닝 모형을 이용한 하천 녹조발생 예측모형의 입력변수 특성에 따른 성능 영향 (Effect of input variable characteristics on the performance of an ensemble machine learning model for algal bloom prediction)

  • 강병구;박정수
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.417-424
    • /
    • 2021
  • Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.

밭작물 농업기상을 위한 수치형 산림입지토양도 활용성 평가 (Utilization Evaluation of Numerical forest Soil Map to Predict the Weather in Upland Crops)

  • 강다영;황영은;윤상후
    • 한국농림기상학회지
    • /
    • 제23권1호
    • /
    • pp.34-45
    • /
    • 2021
  • 날씨는 밭작물의 가격 측정과 생산량 및 품질에 영향을 미치기 때문에 농산업에서 가장 많이 고려되는 요소이다. 특히, 밭작물의 경우 평지보다 산지에서 재배되는 등 외부 환경에 많이 노출되어 있다. 본 연구는 수치 산림입지토양도를 이용하여 산지를 구성하고 있는 12개의 토양의 특성 자료와 기상정보 간의 연관성을 파악하였다. 공간적 상관관계가 고려된 GAM, 크리깅, RF를 이용하였으며, 연구자료는 2009년 1월부터 2018년 12월까지의 기상청과 농촌진흥청에서 수집한 일 단위 평균기온, 최고기온, 최저기온, 강우량 자료가 사용되었다. 분석결과 지리적 효과만 반영된 GAM이 상대적으로 추정성능이 우수하였고, 산림입지토양도는 밭작물 재배지 기상정보를 추정에 큰 도움이 되지 않았다. 이에 유의수준을 5%로 통계적 가설검정을 수행하여 중요 요인을 선택하였다. 산림입지토양도의 기후대코드(CLZN_CD)와 토양목본코드 B(SIBFLR_LAR)가 기상정보 추정에 상대적 유의미한 요인으로 선정되었다. 기후대코드를 추가한 모형의 경우 일 평균 기온과 일 최저기온의 공간 보간 성능이 향상되었다. 한반도의 국토는 70%가 산지이고 밭작물은 주로 산지에서 재배되고 있다. 따라서 산지의 기상정보를 추가 수집하여 연구를 수행한다면 생육시기별로 밭작물을 관리하는데 도움이 될 것으로 기대한다.

머신러닝을 이용한 경기도 화재위험요인 예측분석 (Predictive Analysis of Fire Risk Factors in Gyeonggi-do Using Machine Learning)

  • 서민송;에베르 엔리케 카스티요 오소리오;유환희
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.351-361
    • /
    • 2021
  • 화재는 막대한 재산과 인명피해를 초래하고 있으며 크고 작은 화재가 지속해서 발생하고 있다. 따라서 본 연구는 화재 유형별로 화재에 영향을 미치는 각종 위험요인을 예측하고자 한다. 전국에서 화재 발생 건수가 가장 많은 경기도를 대상으로 화재발생위험요인 예측분석을 실시하였다. 또한, 머신러닝 방법인 SVM, RF, GBRT를 활용하여 각 모형의 정확성을 MAE,RMSE를 통해 적합도가 높은 모형을 제시하였으며 이를 토대로 경기도 화재발생요인 예측분석을 실시하였다. 머신러닝 방법 3가지를 비교분석한 결과 RF가 MAE 1.517, RMSE 1.820으로 나타났으며 MAE, RMSE 검증데이터 및 시험데이터의 경우 MAE값 0.024, RMSE값 0.12의 차이로 매우 유사하게 나타나 가장 우수한 예측력으로 나타났다. RF기법을 적용하여 분석한 결과 공통적으로 발화장소가 화재발생에 가장 큰 영향을 주는 위험요인으로 나타났다. 이러한 연구 결과는 화재발생에 영향을 주는 요인들의 위험순서를 파악하여 화재안전관리의 유용한 자료로 활용될 것으로 예상된다.

생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임 (Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration)

  • 김성원;서영민;자크로프 마샵;말릭 아누락
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1037-1051
    • /
    • 2021
  • 주요한 수질지표 중의 하나인 생물화학적 산소요구량(BOD) 농도는 호소와 하천에서 생태학적 측면에서 관측항목으로 취급하고 있다. 본 연구에서는 대한민국의 도산 및 황지지점에서 BOD 농도예측을 위하여 새로운 이단계 하이브리드 패러다임(웨이블릿 기반 게이트 순환 유닛, 웨이블릿 기반 일반화된 회귀신경망, 그리고 웨이블릿 기반 랜덤 포레스트) 을 활용하였다. 이러한 모형들은 각 대응하는 독립모형들(게이트 순환 유닛, 일반화된 회귀신경망, 그리고 랜덤 포레스트) 과 함께 평가되었다. 다양한 수질 및 수량지표들이 여러 개의 입력조합(분류1-5) 을 기본으로 하여 독립 및 이단계 하이브리드 모형을 개발하기 위하여 구현되었다. 언급한 모형들은 root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), 그리고 correlation coefficient (CC) 를 포함한 세 개의 통계지표로서 평가되었으며, 통계결과치를 분석하면 이단계 하이브리드 모형들이 항상 대응하는 독립모형들의 예측 정도를 개선하지 않은 것으로 나타났다. 대한민국의 도산관측소에서는 DWT-RF5 (RMSE = 0.108 mg/L) 모형이 다른 최적모형과 비교하여 BOD 농도의 더 정확한 예측을 나타내었으며, 황지관측소에서는 DWT-GRNN4 (RMSE = 0.132 mg/L) 모형이 BOD 농도를 예측하는 최고의 모형이다.

스피어 디코더에서 초기 반지름을 결정하는 두 가지 방법에 대한 비교 연구 (Comparison of Two Methods for Determining Initial Radius in the Sphere Decoder)

  • 전은성;김요한;김동구
    • 한국항행학회논문지
    • /
    • 제10권4호
    • /
    • pp.371-376
    • /
    • 2006
  • 스피어 디코더의 초기 반지름 결정 문제는 비트 오율 (bit error rate)과 복잡도에 있어서 많은 영향을 미친다. 이런 초기 반지름은 채널의 통계적 특성을 고려함으로 설정되거나, MMSE 결정 값을 이용하여 설정할 수 있다. 채널의 통계적 특성을 이용한 방법은 초기 반지름이 송신 신호에 해당하는 격자점을 매우 높은 확률로 포함한다. MMSE 결정 값을 이용하는 방법은 먼저 수신 신호에서 MMSE 연 판정 부호(soft output information)을 얻은 후, 경 판정(hard decision)을 내린 다음, 수신 신호 공간에서 경 판정 부호에 해당하는 격자점을 찾는다. 그리고 수신 신호와 경 판정 부호에 해당하는 격자점 사이의 유클리디안 거리(Euclidean distance)를 초기 반지름으로 설정한다. 본 논문에서는 채널의 통계적 특성을 이용한 방법에 있어서 기존의 복잡한 수식에 비해 간단한 새로운 식을 유도하고, MMSE 결정값을 이용한 방법과 비교 연구 하였다. 비교를 위해 'Tightness'라는 새로운 측도를 이용하였다. 전산 실험 결과, 낮은 SNR 영역과 중간 정도의 SNR 영역에서는 MMSE를 이용한 방법의 더 많이 디코딩 복잡도 감소를 보였고, 높은 SNR 영역에서는 채널의 통계적 특성을 이용한 방법이 더 낮은 디코딩 복잡도를 보였다.

  • PDF

다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화 (Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms)

  • 심기찬;이강수
    • 한국전산구조공학회논문집
    • /
    • 제37권3호
    • /
    • pp.163-171
    • /
    • 2024
  • 본 논문에서는 다목적 구조물인 다중연결 해양부유체를 대상으로 변형 기반 모드 차수축소법을 적용하고 차수축소모델의 구조응답 예측 성능을 향상시키기 위해 유전 알고리즘 기반의 센서 배치 최적화를 수행하였다. 다중연결 해양부유체의 차수축소모델 생성에 필요한 변형 기반 모드 데이터를 얻기 위해 다양한 규칙파랑하중조건에 대한 유체-구조 연성 수치해석을 수행하고 변형 기반 모드의 직교성, 자기상관계수를 이용하여 주요 변형 기반 모드를 선정하였다. 다중연결 해양부유체의 경우 차수축소모델의 구조응답 예측 성능이 계측 및 예측 구조응답 위치에 따라 민감하기 때문에 유전 알고리즘 기반의 최적화를 수행하여 최적의 센서 배치를 도출하였다. 최적화 결과, 모든 센서 배치 조합에 대한 차수축소모델 생성 및 예측 성능 평가 대비 약 8배의 계산 비용을 절감하였으며, 예측 성능 평가 지표인 평균 제곱근 오차가 초기 센서 배치보다 84% 감소하였다. 또한, 다중연결 해양부유체 모형시험 결과를 이용하여 불규칙파랑하중에 대한 최적화된 센서 배치의 차수축소모델의 구조응답 예측 성능을 평가 및 검증하였다.

다항식 방사형기저함수 신경회로망을 이용한 ASP 모델링 및 시뮬레이터 설계 (Design of Modeling & Simulator for ASP Realized with the Aid of Polynomiai Radial Basis Function Neural Networks)

  • 김현기;이승주;오성권
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.554-561
    • /
    • 2013
  • In this paper, we introduce a modeling and a process simulator developed with the aid of pRBFNNs for activated sludge process in the sewage treatment system. Activated sludge process(ASP) of sewage treatment system facilities is a process that handles biological treatment reaction and is a very complex system with non-linear characteristics. In this paper, we carry out modeling by using essential ASP factors such as water effluent quality, the manipulated value of various pumps, and water inflow quality, and so on. Intelligent algorithms used for constructing process simulator are developed by considering multi-output polynomial radial basis function Neural Networks(pRBFNNs) as well as Fuzzy C-Means clustering and Particle Swarm Optimization. Here, the apexes of the antecedent gaussian functions of fuzzy rules are decided by C-means clustering algorithm and the apexes of the consequent part of fuzzy rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The coefficients of the consequent polynomial of fuzzy rules and performance index are considered by the Least Square Estimation and Mean Squared Error. The descriptions of developed process simulator architecture and ensuing operation method are handled.