• Title/Summary/Keyword: mean squared deviation

Search Result 76, Processing Time 0.024 seconds

Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence (수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.

Comparison of Clinical Outcomes between Rebound Hyperthermia and Non-Rebound Hypertherma Groups in Postcardiac Arrest Syndrome Patients Undergoing Targeted Temperature Management (목표체온유지치료를 적용한 심정지 후 증후군 환자에서 반동성 고체온 발생군과 비발생군의 임상결과 비교)

  • Rhee, Ha Na;Park, Jeong Yun
    • Journal of Korean Critical Care Nursing
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2023
  • Purpose : This retrospective study aims to provide basic data for intervention to improve clinical outcomes and identify the characteristics of the rebound hyperthermia (RHG) and non-rebound hyperthermia (NRHG) groups by checking body temperature in patients with post-cardiac arrest syndrome. Method : The study involved 118 patients who completed target temperature management (TTM) in an acute-care unit. Data were analyzed for frequency, percentages, mean, standard deviation, median, and quartiles, and compared using the chi-squared test and Mann-Whitney U-test. Results : Rebound hyperthermia (RH) was observed in 74 (62.7%) patients, predominantly male (69.5%), with an average age of 64.54 ± 15.98, and a body mass index of 23.22 ± 4.75kg/m2 (overweight). Hypertension (50%) was the most common co-morbidity, followed by diabetes and heart disease (33.1%). Neuron-specific enolase levels were higher in the NRHG 24, 48, and 72 hours after recovery of spontaneous circulation (p = .037, p < .001, p = .008). The APHCHE IV was also higher in the NRHG (p < .001). RH occurred 25.49 (7.28-52.96) hours after TTM completion, lasting for 2 (1-3) hours. Temperature reduction strategies included notifying doctors, administering antipyretics, and nursing intervention, with the latter being the most common at 94.6%. Half of the subjects in the RHG and 77.3% in the NRHG fell into cerebral performance categories 3, 4, and 5 (p = .003). Conclusion : RH is more likely a body mechanism related to CPR and TTM than a result of pathogenic infection. Therefore, we require an active intervention for hyperthermia, and a patient-specific nursing intervention protocol.

Relationship networks among nurses in acute nursing care units (종합병원 간호단위의 간호사 관계 네트워크 연구)

  • Park, Seungmi;Park, Eun-Jun
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.30 no.2
    • /
    • pp.182-191
    • /
    • 2024
  • Purpose: The purpose of this study was to explore the characteristics of social networks among registered nurses in acute nursing care units. Methods: This study used a survey design. Four nursing units from two acute hospitals were selected using a convenience method, and 83 nurses from those nursing units participated in the study in July 2022. The positive influences among nurses included friendship, collaboration, advice, and referent networks, and the negative influences included avoidance and bullying networks. Using the NetMiner program, the k-means clustering technique was applied to create groups of nodes with similar characteristics. The general characteristics of the participants were analyzed by mean, standard deviation, frequency, and ANOVA or chi-squared test. Results: As a result of dividing the 83 nurse participants into four clusters, positive influencers, silent peers, unwelcome peers, and active bullies were identified. Positive influence group nurses were frequently mentioned in the friendship, collaboration, advice, and referent networks. On the other hand, nurses in the unwelcome group and the active bullying group were frequently mentioned in the avoidance and bullying networks. Conclusion: Social networks that have a positive or negative impact on nursing performance are created through different relationships between nurses. Nurse managers can use the findings to create a more supportive and collaborative environment. Further research is needed to develop intervention programs to improve interactions and relationships between fellow nurses.

Comparison of the Therapeutic Efficacy and Technical Outcomes between Conventional Fixed Electrodes and Adjustable Electrodes in the Radiofrequency Ablation of Benign Thyroid Nodules

  • Jae Ho Shin;Minkook Seo;Min Kyoung Lee;So Lyung Jung
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.199-209
    • /
    • 2024
  • Objective: This study aimed to compare therapeutic efficacy and technical outcomes between adjustable electrode (AE) and conventional fixed electrode (FE) for radiofrequency ablation (RFA) of benign thyroid nodules. Materials and Methods: Between 2013 and 2021, RFA was performed on histologically proven benign thyroid nodules. For the AE method, AE length ≥ 1 cm with higher power and < 1 cm with lower power were utilized for ablating feeding vessels and nodules, especially those near anatomical structures, respectively. The therapeutic efficacy (volume reduction rate [VRR], complication rate, and regrowth rate) and technical outcomes (total energy delivery, ablated volume/energy, RFA time, and ablated volume/time) of FE and AE were compared. Continuous parameters were compared using a two-sample t-test or Mann-Whitney U test, and categorical parameters were compared using a chi-squared test or Fisher's exact test. Results: A total of 182 nodules (FE: 92 vs. AE: 90) in 173 patients (mean age ± standard deviation, 47.0 ± 14.7 years; female, 90.8% [157/173]; median follow-up, 726 days [interquartile range, 441-1075 days]) were analyzed. The therapeutic efficacy was comparable, whereas technical outcomes were more favorable for AE. Both electrodes demonstrated comparable overall median VRR (FE: 92.4% vs. AE: 84.9%, P = 0.240) without immediate major complications. Overall regrowth rates were comparable between the two groups (FE: 2.2% [2/90] vs. AE: 1.1% [1/90], P > 0.99). AE demonstrated a shorter median RFA time (FE: 811 vs. AE: 627 seconds, P = 0.009). Both delivered comparable median energy (FE: 42.8 vs. AE: 29.2 kJ, P = 0.069), but AE demonstrated higher median ablated volume/energy and median ablated volume/time (FE: 0.2 vs. AE: 0.3 cc/kJ, P < 0.001; and FE: 0.7 vs. AE: 1.0 cc/min, P < 0.001, respectively). Conclusion: Therapeutic efficacy between FE and AE was comparable. AE demonstrated better technical outcomes than FE in terms of RFA time, ablated volume/energy, and ablated volume/time.

A Comparison of Analysis Methods for Work Environment Measurement Databases Including Left-censored Data (불검출 자료를 포함한 작업환경측정 자료의 분석 방법 비교)

  • Park, Ju-Hyun;Choi, Sangjun;Koh, Dong-Hee;Park, Donguk;Sung, Yeji
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.21-30
    • /
    • 2022
  • Objectives: The purpose of this study is to suggest an optimal method by comparing the analysis methods of work environment measurement datasets including left-censored data where one or more measurements are below the limit of detection (LOD). Methods: A computer program was used to generate left-censored datasets for various combinations of censoring rate (1% to 90%) and sample size (30 to 300). For the analysis of the censored data, the simple substitution method (LOD/2), β-substitution method, maximum likelihood estimation (MLE) method, Bayesian method, and regression on order statistics (ROS)were all compared. Each method was used to estimate four parameters of the log-normal distribution: (1) geometric mean (GM), (2) geometric standard deviation (GSD), (3) 95th percentile (X95), and (4) arithmetic mean (AM) for the censored dataset. The performance of each method was evaluated using relative bias and relative root mean squared error (rMSE). Results: In the case of the largest sample size (n=300), when the censoring rate was less than 40%, the relative bias and rMSE were small for all five methods. When the censoring rate was large (70%, 90%), the simple substitution method was inappropriate because the relative bias was the largest, regardless of the sample size. When the sample size was small and the censoring rate was large, the Bayesian method, the β-substitution method, and the MLE method showed the smallest relative bias. Conclusions: The accuracy and precision of all methods tended to increase as the sample size was larger and the censoring rate was smaller. The simple substitution method was inappropriate when the censoring rate was high, and the β-substitution method, MLE method, and Bayesian method can be widely applied.

Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities

  • Kim, Sun-Young;Yi, Seon-Ju;Eum, Young Seob;Choi, Hae-Jin;Shin, Hyesop;Ryou, Hyoung Gon;Kim, Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.12.1-12.8
    • /
    • 2014
  • Objectives Cohort studies of associations between air pollution and health have used exposure prediction approaches to estimate individual-level concentrations. A common prediction method used in Korean cohort studies is ordinary kriging. In this study, performance of ordinary kriging models for long-term particulate matter less than or equal to $10{\mu}m$ in diameter ($PM_{10}$) concentrations in seven major Korean cities was investigated with a focus on spatial prediction ability. Methods We obtained hourly $PM_{10}$ data for 2010 at 226 urban-ambient monitoring sites in South Korea and computed annual average $PM_{10}$ concentrations at each site. Given the annual averages, we developed ordinary kriging prediction models for each of the seven major cities and for the entire country by using an exponential covariance reference model and a maximum likelihood estimation method. For model evaluation, cross-validation was performed and mean square error and R-squared ($R^2$) statistics were computed. Results Mean annual average $PM_{10}$ concentrations in the seven major cities ranged between 45.5 and $66.0{\mu}g/m^3$ (standard deviation=2.40 and $9.51{\mu}g/m^3$, respectively). Cross-validated $R^2$ values in Seoul and Busan were 0.31 and 0.23, respectively, whereas the other five cities had $R^2$ values of zero. The national model produced a higher cross-validated $R^2$ (0.36) than those for the city-specific models. Conclusions In general, the ordinary kriging models performed poorly for the seven major cities and the entire country of South Korea, but the model performance was better in the national model. To improve model performance, future studies should examine different prediction approaches that incorporate $PM_{10}$ source characteristics.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

Effect of input variable characteristics on the performance of an ensemble machine learning model for algal bloom prediction (앙상블 머신러닝 모형을 이용한 하천 녹조발생 예측모형의 입력변수 특성에 따른 성능 영향)

  • Kang, Byeong-Koo;Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.417-424
    • /
    • 2021
  • Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.

Nonlinear mixed models for characterization of growth trajectory of New Zealand rabbits raised in tropical climate

  • de Sousa, Vanusa Castro;Biagiotti, Daniel;Sarmento, Jose Lindenberg Rocha;Sena, Luciano Silva;Barroso, Priscila Alves;Barjud, Sued Felipe Lacerda;de Sousa Almeida, Marisa Karen;da Silva Santos, Natanael Pereira
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.648-658
    • /
    • 2022
  • Objective: The identification of nonlinear mixed models that describe the growth trajectory of New Zealand rabbits was performed based on weight records and carcass measures obtained using ultrasonography. Methods: Phenotypic records of body weight (BW) and loin eye area (LEA) were collected from 66 animals raised in a didactic-productive module of cuniculture located in the southern Piaui state, Brazil. The following nonlinear models were tested considering fixed parameters: Brody, Gompertz, Logistic, Richards, Meloun 1, modified Michaelis-Menten, Santana, and von Bertalanffy. The coefficient of determination (R2), mean squared error, percentage of convergence of each model (%C), mean absolute deviation of residuals, Akaike information criterion (AIC), and Bayesian information criterion (BIC) were used to determine the best model. The model that best described the growth trajectory for each trait was also used under the context of mixed models, considering two parameters that admit biological interpretation (A and k) with random effects. Results: The von Bertalanffy model was the best fitting model for BW according to the highest value of R2 (0.98) and lowest values of AIC (6,675.30) and BIC (6,691.90). For LEA, the Logistic model was the most appropriate due to the results of R2 (0.52), AIC (783.90), and BIC (798.40) obtained using this model. The absolute growth rates estimated using the von Bertalanffy and Logistic models for BW and LEA were 21.51g/d and 3.16 cm2, respectively. The relative growth rates at the inflection point were 0.028 for BW (von Bertalanffy) and 0.014 for LEA (Logistic). Conclusion: The von Bertalanffy and Logistic models with random effect at the asymptotic weight are recommended for analysis of ponderal and carcass growth trajectories in New Zealand rabbits. The inclusion of random effects in the asymptotic weight and maturity rate improves the quality of fit in comparison to fixed models.

Prognostic Value of Sarcopenia and Myosteatosis in Patients with Resectable Pancreatic Ductal Adenocarcinoma

  • Dong Wook Kim;Hyemin Ahn;Kyung Won Kim;Seung Soo Lee;Hwa Jung Kim;Yousun Ko;Taeyong Park;Jeongjin Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1055-1066
    • /
    • 2022
  • Objective: The clinical relevance of myosteatosis has not been well evaluated in patients with pancreatic ductal adenocarcinoma (PDAC), although sarcopenia has been extensively researched. Therefore, we evaluated the prognostic value of muscle quality, including myosteatosis, in patients with resectable PDAC treated surgically. Materials and Methods: We retrospectively evaluated 347 patients with resectable PDAC who underwent curative surgery (mean age ± standard deviation, 63.6 ± 9.6 years; 202 male). Automatic muscle segmentation was performed on preoperative computed tomography (CT) images using an artificial intelligence program. A single axial image of the portal phase at the inferior endplate level of the L3 vertebra was used for analysis in each patient. Sarcopenia was evaluated using the skeletal muscle index, calculated as the skeletal muscle area (SMA) divided by the height squared. The mean SMA attenuation was used to evaluate myosteatosis. Diagnostic cutoff values for sarcopenia and myosteatosis were devised using the Contal and O'Quigley methods, and patients were classified according to normal (nMT), sarcopenic (sMT), myosteatotic (mMT), or combined (cMT) muscle quality types. Multivariable Cox regression analyses were conducted to assess the effects of muscle type on the overall survival (OS) and recurrence-free survival (RFS) after surgery. Results: Eighty-four (24.2%), 73 (21.0%), 75 (21.6%), and 115 (33.1%) patients were classified as having nMT, sMT, mMT, and cMT, respectively. Compared to nMT, mMT and cMT were significantly associated with poorer OS, with hazard ratios (HRs) of 1.49 (95% confidence interval, 1.00-2.22) and 1.68 (1.16-2.43), respectively, while sMT was not (HR of 1.40 [0.94-2.10]). Only mMT was significantly associated with poorer RFS, with an HR of 1.59 (1.07-2.35), while sMT and cMT were not. Conclusion: Myosteatosis was associated with poor OS and RFS in patients with resectable PDAC who underwent curative surgery.