• 제목/요약/키워드: mean square error (MSE)

검색결과 296건 처리시간 0.028초

곰페르츠형 형상모수에 근거한 소프트웨어 신뢰성모형에 대한 비교연구 (The Comparative Study based on Gompertz Software Reliability Model of Shape Parameter)

  • 신현철;김희철
    • 디지털산업정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.29-36
    • /
    • 2014
  • Finite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the Gompertz distribution reliability model, which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination$(R^2)$, for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing fixed shape parameter of the Gompertz distribution was employed. This analysis of failure data compared with the Gompertz distribution model of shape parameter. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the proposed Gompertz model is more efficient in terms of reliability in this area. Thus, Gompertz model can also be used as an alternative model. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can was helped.

역산문제 방법을 적용한 제네릭 의약품 개발 프로세스의 강건 설계 (Integrating Inverse problem to robust design for a generic drug development process)

  • ;신상문;정성훈
    • 품질경영학회지
    • /
    • 제39권3호
    • /
    • pp.365-376
    • /
    • 2011
  • Robust design (RD) has emerged as a key feature in process design and development for more than twenty years. Many researchers and industrial engineers around the world have invested their intensive efforts to develop and apply RD in many fields in order to improve quality of output products. However, there is also room for improvement. The primary objective of this research is to determine "robust formulation" of a medicine by checking its gelation index. In order to achieve this target, based on the nature of problem, at first, a customized experimental format is designed for obtaining data. Second, time-depended responses based models are developed by the proposed inverse problem (IP) methodology. Third, an RD model based on mean square error (MSE) concept is introduced for time-depended responses. Finally, the proposed approach is illustrated by a case study while comparing obtained results to the response surface methodology (RSM) approach.

ANN을 이용한 Radar 면적강우량의 정확도 향상 (Improve Acuracy of Rardar Areal Rainfall using Artificial Neural Network)

  • 김영일;최지안;김태순;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.37-41
    • /
    • 2009
  • 본 연구에서는 티센망을 이용한 면적강우량 산정방법의 대안으로서 최근 들어 수자원공학 분야에의 활용성이 커지고 있는 고해상도 기상레이더의 반사도자료(dBZ)를 활용하여 면적강우량을 산정하였다. 또한 이렇게 산정된 레이더 면적강우량을 티센망으로써 산정된 면적강우량과 비교하여 그 유용성을 판단하였다. 연구지역으로는 소양강댐 유역을 선정하였으며, 연구기간은 2008년 가장 강한 강우를 보였던 상위 5개의 사상을 선정하였다. 본 연구에서는 레이더 반사도를 강우강도로 변환시키는 과정은 인공신경망(artificial neural network, ANN) 중에서 일반적으로 널리 사용되고 있는 다층 퍼셉트론 인공신경망 모형을 적용하였다. 연구방법으로는 선택된 4개의 인자를 입력노드에 넣어 인공신경망을 학습시킨 후 연구지역 내 10개 AWS 지상관측소의 강우량을 추정하여 정확도를 비교 분석하였다. 이를 바탕으로 최종적으로 레이더 면적강우량을 산정하여 기존의 티센망을 이용한 면적강우량과 그 값을 비교하였다. 그 결과 인공신경망을 이용한 레이더 강우량의 경우, 평균제곱오차(mean square error, MSE) 및 상관계수(correlation coefficient, CC)가 매우 양호한 값을 보였다. 또한 유역 내 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 약 $7%^{\sim}19%$ 정도 차이가 발생함을 확인하였으며, 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 더 정확한 면적강우량을 산정할 수 있다고 판단된다.

  • PDF

국가통계 품질측정을 위한 체계적 접근 - 표본조사의 품질평가지표 개발을 중심으로 (A Systematic Approach to Quality Measurement of Official Statistics))

  • 이동명;김설희
    • 한국조사연구학회:학술대회논문집
    • /
    • 한국조사연구학회 2002년도 추계학술대회 발표논문집
    • /
    • pp.111-127
    • /
    • 2002
  • 국가통계의 활용도가 높아질수록 통계에 대한 객관적인 품질평가 필요성도 높아지게 된다. 과거에 대표적인 품질평가지표로 간주되어 온 평균제곱오차나 응답률은 유용성에 많은 문제가 있으므로 통계이용자의 다양한 요구사항을 반영할 수 있는 새로운 품질지표 개발의 필요성이 대두되었다. 따라서 본 논문에서는 정부기관에서 작성하고 있는 표본통계조사를 대상으로 통계작성 절차의 흐름을 분석하고 각 절차별 투입자료와 산출결과를 인식함으로써 최종 집계결과의 품질에 영향을 미칠 수 있는 절차별 품질지표를 개발하는 방법이 연구되었다. 또한 발굴된 절차별 품질지표에 다른 통계간 또는 동일 통계간 품질을 비교할 수 있도록 품질지수 산출방법이 논의되었다.

  • PDF

Noisy 한 CFD 결과에 대한 구속조건을 고려한 EGO 방법 연구 (A STUDY ON CONSTRAINED EGO METHOD FOR NOISY CFD DATA)

  • 배효길;권장혁
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.32-40
    • /
    • 2012
  • Efficient Global Optimization (EGO) method is a global optimization technique which can select the next sample point automatically by infill sampling criteria (ISC) and search for the global minimum with less samples than what the conventional global optimization method needs. ISC function consists of the predictor and mean square error (MSE) provided from the kriging model which is a stochastic metamodel. Also the constrained EGO method can minimize the objective function dealing with the constraints under EGO concept. In this study the constrained EGO method applied to the RAE2822 airfoil shape design formulated with the constraint. But the noisy CFD data caused the kriging model to fail to depict the true function. The distorted kriging model would make the EGO deviate from the correct search. This distortion of kriging model can be handled with the interpolation(p=free) kriging model. With the interpolation(p=free) kriging model, however, the search of EGO solution was stalled in the narrow feasible region without the chance to update the objective and constraint functions. Then the accuracy of EGO solution was not good enough. So the three-step search method was proposed to obtain the accurate global minimum as well as prevent from the distortion of kriging model for the noisy constrained CFD problem.

FRP 바닥판의 해석모델개선을 위한 System Identification 기법 (System Identification for Analysis Model Upgrading of FRP Decks)

  • 서형열;김두기;김동현;취진타오;이영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.588-593
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

An Evolutionary Optimized Algorithm Approach to Compensate the Non-linearity in Linear Variable Displacement Transducer Characteristics

  • Murugan, S.;Umayal, S.P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2142-2153
    • /
    • 2014
  • Linearization of transducer characteristic plays a vital role in electronic instrumentation because all transducers have outputs nonlinearly related to the physical variables they sense. If the transducer output is nonlinear, it will produce a whole assortment of problems. Transducers rarely possess a perfectly linear transfer characteristic, but always have some degree of non-linearity over their range of operation. Attempts have been made by many researchers to increase the range of linearity of transducers. This paper presents a method to compensate nonlinearity of Linear Variable Displacement Transducer (LVDT) based on Extreme Learning Machine (ELM) method, Differential Evolution (DE) algorithm and Artificial Neural Network (ANN) trained by Genetic Algorithm (GA). Because of the mechanism structure, LVDT often exhibit inherent nonlinear input-output characteristics. The best approximation capability of optimized ANN technique is beneficial to this. The use of this proposed method is demonstrated through computer simulation with the experimental data of two different LVDTs. The results reveal that the proposed method compensated the presence of nonlinearity in the displacement transducer with very low training time, lowest Mean Square Error (MSE) value and better linearity. This research work involves less computational complexity and it behaves a good performance for nonlinearity compensation for LVDT and has good application prospect.

Optimal sensor placement for mode shapes using improved simulated annealing

  • Tong, K.H.;Bakhary, Norhisham;Kueh, A.B.H.;Yassin, A.Y. Mohd
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.389-406
    • /
    • 2014
  • Optimal sensor placement techniques play a significant role in enhancing the quality of modal data during the vibration based health monitoring of civil structures, where many degrees of freedom are available despite a limited number of sensors. The literature has shown a shift in the trends for solving such problems, from expansion or elimination approach to the employment of heuristic algorithms. Although these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the requirement of high computational effort. Because a highly efficient optimisation method is crucial for better accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the sensor placement problem. The algorithm is developed based on the sensor locations' coordinate system to allow for the searching in additional dimensions and to increase SA's random search performance while minimising the computation efforts. The proposed method is tested on a numerical slab model that consists of two hundred sensor location candidates using three types of objective functions; the determinant of the Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA and Genetic Algorithm (GA) in the search for optimal sensor placement.

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

MIMO-OFDM 시스템에서 Walsh 부호화된 훈련 신호를 이용한 시간 영역 채널 추정 방식 (Walsh Coded Training Signal Aided Time Domain Channel Estimation Scheme In MIMO-OFDM Systems)

  • 전형구;장종욱;송형규
    • 한국통신학회논문지
    • /
    • 제32권3C호
    • /
    • pp.331-337
    • /
    • 2007
  • 본 논문에서는 MIMO-OFDM 시스템에서 월쉬 부호화된 훈련신호를 이용하는 새로운 채널 추정 방식을 제안하였다. 월쉬 부호화된 훈련신호는 시간 영역에서 서로 직교하도록 설계된다. 이러한 직교성을 이용하여 월쉬 디코딩을 수행하면 시간 영역에서 원하는 훈련 신호를 분리할 수 있고 채널 추정이 가능하다. 컴퓨터 시뮬레이션 결과 제안된 방법은 계산량 감소에도 불구하고 최적 훈련 신호를 사용하는Li의 원래 방법[4]과 비교했을 때 거의 동일한 mean square error (MSE) 성능을 보였다.