An updateable model output statistics (UMOS) system for daily maximum and minimum temperature ($T_M$ and $T_m$) over South Korea based on the Canadian UMOS system were developed and validated. RDAPS (regional data assimilation and prediction system) and KWRF (Korea WRF) which have quite different physics and dynamics were used for the development of UMOS system. The 20 most frequently selected potential predictors for each season, station, and forecast projection time from the 68 potential predictors of the MOS system, were used as potential predictors of the UMOS system. The UMOS equations were developed through the weighted blending of the new and old model data, with weights chosen to emphasize the new model data while including enough old model data to ensure stable equations and a smooth transition of dependency from the old model to the new model. The UMOS equations are being updated by every 7 days. The validation results of $T_M$ and $T_m$ showed that seasonal mean bias, RMSE, and correlation coefficients for the total forecast projection times are -0.41-0.17 K, 1.80-2.46 K, and 0.80-0.97, respectively. The performance is slightly better in autumn and winter than in spring and summer. Also the performance of UMOS system are clearly dependent on location, better at the coastal region than inland area. As in the MOS system, the performance of UMOS system is degraded as the forecast day increases.
Stochastic weather generator is a commonly used tool to simulate daily weather time series. Recently, a generalized linear model(GLM) has been proposed as a convenient approach to tting these weather generators. In the present paper, a stochastic weather generator is considered to model the time series of daily temperatures for Seoul South Korea. As a covariate, precipitation occurrence is introduced to a relate short-term predictor to short-term predictands. One of the limitations of stochastic weather generators is a marked tendency to underestimate the observed interannual variance of monthly, seasonal, or annual total precipitation. To reduce this phenomenon, we incorporate a time series of seasonal mean temperatures in the GLM weather generator as a covariate.
This study aims to estimate daily maximum air temperature estimated using satellite-derived surface temperature and Elevation Derivative Database (EDD). The analysis is focused on the establishment of a semi-empirical estimation technique of daily maximum air temperature through the multiple regression analysis. This tests the contribution of EDD in the air temperature estimation when it is added into regression model as an independent variable. The better correlation is shown with the EDD data as compared with the correlation without this data set. In order to provide a progressive estimation technique, we propose and compare three approaches: 1) seasonal estimation non-considering landcover, 2) seasonal estimation considering landcover, and 3) estimation according to landcover type and non-considering season. The last method shows the best fit with the root-mean-square error between 0.56$^{\circ}C$ and 3.14$^{\circ}C$. A cross-validation procedure is performed for third method to valid the estimated values for two major landcover types (cropland and forest). For both landcover types, the validation results show reasonable agreement with estimation results. Therefore it is considered that the estimation technique proposed may be applicable to most parts of South Korea.
Journal of the Korean Association of Geographic Information Studies
/
v.22
no.4
/
pp.197-214
/
2019
In this study, the correlation analysis was conducted between observed air temperature (maximum, minimum, and mean air temperature) and the daytime and nighttime data of Terra/Aqua MODIS LST(Moderate Resolution Imaging Spectroradiometer Land Surface Temperature) for 86 weather stations. All the data of the recent 11 years from 2008 to 2018 were prepared with daily base. In particular, the characteristics of the cold and heat waves incidence period in 2018 were analyzed. The correlation analysis was performed using the Pearson correlation coefficient(R) and root mean square error(RMSE). As a result of time series analysis, the trend between observed air temperature and MODIS LST were similar, showing the correlation above 0.9 in maximum temperature, above 0.8 in mean and minimum temperature. Especially, the maximum temperature was found to have the highest accuracy with Terra MODIS LST daytime, and the minimum temperature had the highest correlation with Terra MODIS LST nighttime. During the cold wave period, both Terra and Aqua MODIS LST showed higher correlations with nighttime data than daytime data. For the heat wave period, the Aqua MODIS LST daytime data was good, but the overall R was below 0.5. Additional analysis is necessary for further study considering such as land cover and elevation characteristics.
To understand day-to-day fluctuations in soil moisture content in Seoul, I simulated daily soil moisture content from 1908 to 2009 using long-term climatic precipitation and temperature data collected at the Surface Synoptic Meteorological Station in Seoul for the last 98 years with a hydrological simulation model, BROOK. The output data set from the BROOK model allowed me to examine day-to-day fluctuations and the severity and duration of droughts in the Seoul area. Although the soil moisture content is highly dependent on the occurrence of precipitation, the pattern of changes in daily soil moisture content was clearly quite different from that of precipitation. Generally, there were several phases in the dynamics of daily soil moisture content. The period from mid-May to late June can be categorized as the initial period of decreasing soil moisture content. With the initiation of the monsoon season in late June, soil moisture content sharply increases until mid-July. From the termination of the rainy season in mid-July, daily soil moisture content decreases again. Highly stochastic events of typhoons from late June to October bring large amount of rain to the Korean peninsula, culminating in late August, and increase the soil moisture content again from late August to early September. From early September until early October, another sharp decrease in soil moisture content was observed. The period from early October to mid-May of the next year can be categorized as a recharging period when soil moisture content shows an increasing trend. It is interesting to note that no statistically significant increase in mean annual soil moisture content in Seoul, Korea was observed over the last 98 years. By simulating daily soil moisture content, I was also able to reconstruct drought phenomena to understand the severity and duration of droughts in Seoul area. During the period from 1908 to 2009, droughts in the years 1913, 1979, 1939, and 2006 were categorized as 'severe' and those in 1988 and 1982 were categorized as 'extreme'. This information provides ecologists with further potential to interpret natural phenomenon, including tree growth and the decline of tree species in Korea.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.135-135
/
2021
In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.
Korean Journal of Agricultural and Forest Meteorology
/
v.7
no.2
/
pp.148-155
/
2005
An accurate prediction of blooming date is crucial for many authorities to schedule and organize successful spring flower festivals in Korea. The Korea Meteorological Administration (KMA) has been using regression models combined with a subjective correction by forecasters to issue blooming date forecasts for major cities. Using mean monthly temperature data for February (observed) and March (predicted), they issue blooming date forecasts in late February to early March each year. The method has been proved accurate enough for the purpose of scheduling spring festivals in the relevant cities, but cannot be used in areas where no official climate and phenology data are available. We suggest a thermal time-based two-step phenological model for predicting the blooming dates of spring flowers, which can be applied to any geographic location regardless of data availability. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units until a pre-determined chilling requirement for rest release. After the projected rest release date, it accumulates daily heat units (growing degree days) until a pre- determined heating requirement for flowering. Model parameters were derived from the observed bud-burst and flowering dates of cherry tree (Prunus serrulata var. spontanea) at KMA Seoul station along with daily temperature data for 1923-1950. The model was applied to the 1955-2004 daily temperature data to estimate the cherry blooming dates and the deviations from the observed dates were compared with those predicted by the KMA method. Our model performed better than the KMA method in predicting the cherry blooming dates during the last 50 years (MAE = 2.31 vs. 1.58, RMSE = 2.96 vs. 2.09), showing a strong feasibility of operational application.
Journal of the Korean Association of Geographic Information Studies
/
v.16
no.4
/
pp.29-38
/
2013
This study is to construe the spatio-temporal characteristics of temperature in cities and the changes of climatical regions by analyzing a climate change in Korea peninsular. We used daily mean air temperature data which were collected in South and North climate stations for the past 34 years from 1974 to 2007. We created temperature maps of 500m resolution with Inverse Distance Weight in application with adiabatic lapse rate per month in linear relation with height and temperature. In the urbanization area, the data analyzed population in comparison with temperature changes by the year. The south climate region in Korea by the Warmth index was expanded to the middle climate region by the latitude after 1990s. A rise of mean temperature was $0.5{\sim}1.2^{\circ}C$ in urban areas such as Seoul, metropolitan and cities which had a rapid urbanization and industrialization with the population increase between 1980s and 1990s. In case of North Korea, cities such as Pyeongyang, Anju, Gaecheon, and Hesan had the same pattern.
Under the constant daylength of 13 hours and growth temperatures of 15$^{\circ}C$ to 27$^{\circ}C$, the final number of loaves (FNL) on the main culm was constant as 15 regardless of temperature in rice variety 'Kwanganbyeo'. Leaf appearance rate (LAR) increased with rising temperature and decreased with phenological development. Threshold temperature (T$_{o}$) was not constant across growth stages, but increased with phenological development. Effective accumulated temperature (EAT), which is calculated by the summation of values subtracting T0 from daily mean temperature, is closely related with number of leaves appeared (LA). LA was fitted to bilinear, quadratic, power and logistic function of EAT. Among the functions, logistic function had the best fitness of which coefficient of determination was $R^2$=0.995. Therefore, LAR prediction model was established by differentiating this function in terms of time: (equation omitted). where dL/dt is LAR, T$_1$ is daily mean temperature, L is the number of leaves appeared, and a, b, and c are constants that were estimated as 41.8, 1098.38, and -0.9273, respectively. When predictions of LA were made by LAR prediction model using data independent of model establishment, the observed and predicted LA showed good agreement of $R^2$$\geq$0.99.
Journal of the Korean Society of Environmental Restoration Technology
/
v.24
no.6
/
pp.109-119
/
2021
Thermal environment of city is getting worse due to severe urban heat island caused by climate change and urbanization. Green roof improves the urban thermal environment and save the cooling energy in buildings. This study presented a green roof combined with a storage system that stores rain-water and supplies water through a wick and evaluated the temperature reduction effect as surface temperature and amount of evapotranspiration. For about a week, the surface temperature using a infrared thermal imager and the evapotranspiration by recording change of module weight were measured at intervals of 30 minutes from sunrise to sunset. The results show that the mean surface temperature of the green roof was 15.4 degrees lower than that of the non-green roof from 12:00 P.M. to 14:00 P.M. There was no significant difference between mean surface temperature of green roof with and without storage system immediately after rain, but more than a week after rain, there was a difference with average of 2.49 degrees and maximum of 4.72 degrees. The difference in daily amount of evapotranspiration was measured to be 1.66 times on average. As drought stress increased over time, the difference in daily amount of evapotranspiration and surface temperature between with/without storage system increased simultaneously. The results of the study show a more excellent cooling effect of green roof combined with the rainwater storage system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.