DOI QR코드

DOI QR Code

A New Look at the Statistical Method for Remote Sensing of Daily Maximum Air Temperature

위성자료를 이용한 일최고온도 산출의 통계적 접근에 관한 고찰

  • 변민정 (부경대학교 환경대기과학과) ;
  • 한경수 (프랑스 기상청 기상연구소) ;
  • 김영섭 (부경대학교 위성정보과학과)
  • Published : 2004.04.01

Abstract

This study aims to estimate daily maximum air temperature estimated using satellite-derived surface temperature and Elevation Derivative Database (EDD). The analysis is focused on the establishment of a semi-empirical estimation technique of daily maximum air temperature through the multiple regression analysis. This tests the contribution of EDD in the air temperature estimation when it is added into regression model as an independent variable. The better correlation is shown with the EDD data as compared with the correlation without this data set. In order to provide a progressive estimation technique, we propose and compare three approaches: 1) seasonal estimation non-considering landcover, 2) seasonal estimation considering landcover, and 3) estimation according to landcover type and non-considering season. The last method shows the best fit with the root-mean-square error between 0.56$^{\circ}C$ and 3.14$^{\circ}C$. A cross-validation procedure is performed for third method to valid the estimated values for two major landcover types (cropland and forest). For both landcover types, the validation results show reasonable agreement with estimation results. Therefore it is considered that the estimation technique proposed may be applicable to most parts of South Korea.

본 연구는 위성으로부터 얻어진 지표온도와 Elevation Derivative Database(EDD)를 사용하여 일 최고기온을 산출하기 위해 수행되었다. 실험은 다중 회귀 분석을 통하여 일 최고기온의 반 경험적 산출 시스템을 구축하는데 초점이 맞추어졌다. 회귀식 내에서 EDD가 하나의 독립변수로 추가되었을 때 온도 산출에 어떤 영향을 미치는지도 테스트 되었다. 본 연구에서는 EDD가 회귀식에 추가되었을 때가 그렇지 않았을 때 보다 좋은 상관을 보였고 이는 EDD가 좀 더 정확한 산출을 위해 필요한 자료임을 나타낸다. 진보된 산출시스템을 만들기 위해 본 연구는 3가지 접근을 시도하여 그 결과론 비교하였다. 3가지 접근방법은 다음과 같다: 1) 토지피복을 고려하지 않은 계절별 산출법, 2) 토지피복을 고려한 계절별 산출법, 그리고 3) 계절의 구분이 없는 토지피복 형태별 산출법이다. 세번째 방법이 0.56$^{\circ}C$에서 3.14$^{\circ}C$ 사이의 정확도와 함께 가장 최상의 결과를 보여주었다. 산출결과를 검증하기 위해 가장 정확도가 좋았던 세 번째 산출 시스템에 대한 교차검증을 농경지와 산림지역을 대상으로 수행하였다. 검증결과는 토지 피복의 종류에 관계없이 좋은 결과를 보였다. 따라서 제시된 일 최고기온 산출 시스템은 남한의 대부분 지역에서 적용 가능하리라 사료된다.

Keywords

References

  1. 대한원격탐사학회지 v.15 no.3 NOAA/AVHRR 주간 자료로부터 지면 자료 추출을 위한 구름 탐지 알고리즘의 개발 서명석;이동규 https://doi.org/10.7780/kjrs.1999.15.3.239
  2. 한국지리정보학회지 v.4 no.1 원격탐사자료와 GIS를 활용한 도시표면 온도의 공간적 분포 특성에 관한 연구 조명희;이광재;김운수
  3. Int. J. Remote Sens. v.11 no.3 Towards a local split window method over land surface Becker,F.;Z.L.Li https://doi.org/10.1080/01431169008955028
  4. Bull. Amer. Meteor. Soc. v.58 Potential application of satellite temperature measurement in the analysis of land use over urban areas Carlson,T.N.;J.A.Augustime;F.E.Boland
  5. Remote Sens. Environ. v.60 Multitemporal, multichannel AVHRR data sets for land biosphere studies-artifacts and corrections Cihlar,J.;H.Ly;Z.Li;J.Chen;H.Pokrant;F.Huang https://doi.org/10.1016/S0034-4257(96)00137-X
  6. Int. J. Remote Sens. v.15 Applications of NOAA-AVHRR 1km data for environmental monitoring Ehrlich,D.;J.E.Estes;A.Singh https://doi.org/10.1080/01431169408954056
  7. J. Appl. Meteor. v.32 The use of NOAA AVHRR data for assessment of the urban heat island effect Gallo,K.P.;J.F.Brown;J.J.Hood;J.D.Tarpley;A.L.Mcnab;T.R.Karl https://doi.org/10.1175/1520-0450(1993)032<0899:TUONAD>2.0.CO;2
  8. The climate near the ground Geiger,R.
  9. Int. J. Remote Sens. v.8 no.6 Cloud screening for determination of land surface characteristics in a reduced resolution satellite data set Gutman,G.;D.Tarpley;G.Ohring https://doi.org/10.1080/01431168708948694
  10. Korean. J. Remote Sens. v.17 no.2 Inter-annual and intra-annual variabilities of NDVI, LAI and Ts estimated by AVHRR in Korea Ha,K.J.;H.M.Oh;K.Y.Kim https://doi.org/10.7780/kjrs.2001.17.2.111
  11. Can. J. Forest Res. v.33 High-resolution forest fire weather index computations using satellite remote sensing Han,K.S.;A.A.Viau;F.Anctil https://doi.org/10.1139/x03-014
  12. Int. J. Remote Sens. An analysis of GOES- and NOAA-derived land surface temperatures estimated over a boreal forest Han,K.S.;A.A.Viau;F.Anctil
  13. Climate Change v.31 Land surface temperatures: is the network good enough? Jones,P.D. https://doi.org/10.1007/BF01095161
  14. Climate Change v.31 Critical issues for long-term climate monitoring Karl,T.R.;V.E.Derr;D.R.Easterling;C.K.Folland;D.J.Hofmann;S.Levitus;N.Nicholls;D.E.Parker;G.W.Withee https://doi.org/10.1007/BF01095146
  15. Principles of Environmental physics Monteith,J.L.;M.H.Unsworth
  16. J. Geophys. Res. v.95 Spectral properties of land surface in the thermal infrared band: 1 laboratory measurements of absolute spectral emissivity and reflectivity sinatures Nerry,F.J.;Labed;M.P.Stoll https://doi.org/10.1029/JB095iB05p07027
  17. Boundary layer climates Oke,T.R.
  18. Proceeding Int Symp. Geomatics in the Era of Radarsat(GER'97) Regionalisation of air temperatures using AVHRR derived surface skin temperature together with terrain and landcover data Paquet,F.;J.V.Vogt;A.A.Viau
  19. Microclimate: The biological environment Rosenberg,N.J.;B.L.Blad;S.B.Verma
  20. Remote Sens. Environ. v.47 Emissivity of terrestrial materials in the 8-14mm atmospheric window Salisbury,J.W.;D.M.D'Aria https://doi.org/10.1016/0034-4257(94)90102-3
  21. Int J. Remote Sens. v.9 no.1 An improved method for detecting clear sky and cloudy radiances from AVHRR data Saunders,R.W.;K.T.Kriebel https://doi.org/10.1080/01431168808954841
  22. Int. J. Remote Sens. v.17 no.14 Cloud detection from thermal infrared images using a segmentation technique Shin,D.;J.K.Pollard;J.P.Muller https://doi.org/10.1080/01431169608949110
  23. IEEE Trans. Geosci. Remote Sens. v.32 Improvement in the split-window technique for land surface temperature determination Sobrino,J.A.;Z.L.Li;M.P.Stoll;F.Becker https://doi.org/10.1109/36.295038
  24. Remote Sens. Environ. v.8 Red and photographic infrared linear combinations monitoring vegetation Tucker,C.J. https://doi.org/10.1016/0034-4257(79)90013-0
  25. Int. J. Remote Sens. v.14 no.6 On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces Van de Griend,A.A.;M.Owe https://doi.org/10.1080/01431169308904400
  26. Int. J. Remote Sens. v.21 no.16 Evaluation de al representativite spatilae thermique des stations meteorologiques du reseau d'Andalousie Viau,A.A.;J.V.Vogt;F.Paquet https://doi.org/10.1080/01431160050144974
  27. International J. Climatol. v.17 Mapping regional air temperature fields using satellite-derived surface skin temperatures Vogt,J.V.;A.A.Viau;F.Paquet https://doi.org/10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
  28. IEEE Trans, Geosci. Remote. Sens. v.27 Land-surface temperature measurement form space : physical principles and inverse modelling Wan,Z.;J.Dozier https://doi.org/10.1109/36.17668
  29. J. British International Soc. v.13 Observing the weather from a satellite vehicle Wexler,H.