• Title/Summary/Keyword: maxwell's equation

Search Result 99, Processing Time 0.022 seconds

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar;Amara, Khaled;Bouazza, Mokhtar;Bourada, Fouad
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.113-122
    • /
    • 2018
  • In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.

A study on the transmission efficiency of electromagnetic wave propagation in tunnels with bend and fold (굴곡 및 굴절형 터널 내의 전파 전파의 전송 효율에 관한 연구)

  • ;;Toshiaki MATSUNAGA;Kazunori UCHIDA;Kiyotoshi YASUMOTO
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.25-32
    • /
    • 1996
  • This paper is concenred with a finite volume time domain (FVTD) method for the analyses of transmission efficiency of electromagnetic wave propagation in tunnels with bend and fold. This method is gased on the volume integratio sof the maxwell's equation with respected to arbitrary shaped small polyhedron cells. The advantages of the present mehtod are that the algorithm is very simple since the coordinate system is restricted only to the cartesian, and so the arbitrary shaped boundaries can easily be dealt with since the fields at every center point of the cells are assigned in an average fashion.

  • PDF

Numerical Analysis on the Control of Particle-laden Flow Using Electromagnetic Field (전기자장에 의한 혼상류의 제어에 관한 수치해석)

  • NAM Seong-Won;KAMIYAMA Shin-icki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.125-130
    • /
    • 1996
  • A numerical analysis is conducted on heat transfer and fluid flow of a plasma spraying process under the DC-RE hybrid electromagnetic field. Plasma flow is analyzed by using Eulerian approach and the equation of particle motion is simultaneously solved using a trajectory analysis with a lumped-heat-capacity model. Axisymmetric two dimensional electromagnetic fields governed by Maxwell's equations are solved based on a vector potential concept. The effects of the RF electromagnetic field on the temperature and velocity fields of the turbulent plasma flow are clarified. Control characteristics of phase changes and dispersed features of particles by applying the RF electromagnetic field are also clarified in an attempt to improve the plasma spraying process

  • PDF

Electric potential redistribution due to time-dependent creep in thick-walled FGPM cylinder based on Mendelson method of successive approximation

  • Kheirkhah, S.;Loghman, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1167-1182
    • /
    • 2015
  • In this study, the stresses and electric potential redistributions of a cylinder made from functionally graded piezoelectric material (FGPM) are investigated. All the mechanical, thermal and piezoelectric properties are modeled as power-law distribution of volume fraction. Using the coupled electro-thermo-mechanical relations, strain-displacement relations, Maxwell and equilibrium equations are obtained including the time dependent creep strains. Creep strains are time, temperature and stress dependent, the closed form solution cannot be found for this constitutive differential equation. A semi-analytical method in conjunction with the Mendelson method of successive approximation is therefore proposed for this analysis. Similar to the radial stress histories, electric potentials increase with time, because the latter is induced by the former during creep deformation of the cylinder, justifying industrial application of such a material as efficient actuators and sensors.

IMPLEMENTATION OF VELOCITY SLIP MODELS IN A FINITE ELEMENT NUMERICAL CODE FOR MICROSCALE FLUID SIMULATIONS (속도 슬립모델 적용을 통한 마이크로 유체 시뮬레이션용 FEM 수치 코드 개발)

  • Hoang, A.D.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • The slip effect from the molecular interaction between fluid particles and solid surface atoms plays a key role in microscale fluid transport and heat transfer since the relative importance of surface forces increases as the size of the system decreases to the microscale. There exist two models to describe the slip effect: the Maxwell slip model in which the slip correction is made on the basis of the degree of shear stress near the wall surface and the Langmuir slip model based on a theory of adsorption of gases on solids. In this study, as the first step towards developing a general purpose numerical code of the compressible Navier-Stokes equations for computational simulations of microscale fluid flow and heat transfer, two slip models are implemented into a finite element numerical code of a simplified equation. In addition, a pressure-driven gas flow in a microchannel is investigated by the numerical code in order to validate numerical results.

Full-Wave Analysis of Microstrip Structures by Time-Domain Finite Difference (TDFD) Method (시간 영역 유한 차분법을 이용한 마이크로스트립 구조의 풀-웨이브 해석)

  • 김동욱;홍성철;이기로
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.31-38
    • /
    • 1992
  • In this paper, numerical analysis package using Time-Domain Finite Difference (TDFD) method is developed to solve the initial value problem of Maxwell's equation and applied to several microstrip structures. TDFD allows us to show graphically the evolution of the crosswalk between microstrip lines. Moreover, we can obtain transmission line parameters and scattering parameters through Fourier transform of TDFD results in easy and efficient ways. TDFD is successfully applied to :1) wide band electromagnetic wave propagation along the single microstrip line, 2) crosswalk analysis between two microstrip lines, and 3) three metal line side-coupled filter. Our results show much better agreement with other theoretical experimental results reported in the literature. Thus we expect that TDFD is very useful to designing MMIC(Monolithic Microwave Integrated Circuit).

  • PDF

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

  • Ham, Sang-Hwan;Cho, Su-Yeon;Kang, Dong-Woo;Lee, Hyung-Woo;Chan, Hong-Soon;Lee, Ju
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • This paper describes design and characteristic analysis of long primary type linear synchronous motor (LSM) for high speed train system. LSM is designed using loading distribution method and magnetic equivalent circuit. For characteristic analysis of LSM, analytical and numerical methods are applied. Analytical method for solving the magnetic field distribution of the analytic model is based on the Maxwell’s equations. Using the characteristic equation and magnetic equivalent circuit, we analyze the effect of variation of parameters, and then we validate the result by comparing with numerical method by finite element method (FEM). We compare the analytical method with numerical method for analyzing the effect by variable parameters. This result will be useful of design and forecast of performance without FEM.

  • PDF

Electromagnatic Effect Analysis inside Electrically Large Structures Using Topological Modeling and PWB Method (위상학적 모델링과 PWB Method를 이용한 대형 구조물 내부의 전자파 영향 해석)

  • Lee, Jae-Min;Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Kwon, Jong-Hwa
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.284-290
    • /
    • 2016
  • As the recently advanced scientific developments result in high lever of the usability and the needs for the electrical equipment and devices in various situations, the safety technologies protecting malfunction and electrical critical damages including soft and hardware from the unexpectedly radiated electromagnetic interferences are required gradually. In addition, the numerical analysis for the miniaturized electrical components and equipments as well as the conventional electrical devices installed inside the electrically large enclosures and structures requires the memory requirement and time consumption too big to be handled in a realistic situation, which will result in a limitation in solving the complete set of maxwell's equations. In this paper, PWB method based on statistical theory and topological modeling with appropriate zoning concepts are introduced for the EM analysis of an electrically large complex structures.

Electromagnetic Simulation of Ring-shaped Electrodeless fluorescent Lamps and its Electrical and Optical Characteristics (환형 무전극 형광램프의 전자계 시뮬레이션, 전기적 및 광학적 특성)

  • 최용성;조주웅;이영환;김광수;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.552-559
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, the advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The ring-shaped electrodeless lamp is intended as a high efficiency replacement for the incandescent reflector lamp in many applications. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours. In this paper, maxwell 3D finite element analysis program(Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 KHz and some specific conditions. The optical characteristics were measured luminance and a temperature and an optical spectrum distribution for 10 min in a one minute interval at the same time. With a goal of finding alternative materials, we show measurement results of electrical characteristics of a ring-shaped electrodeless fluorescent lamp as a function of frequency and the number of coil turns using a highly permeable($\mu$$_{r}$(equation omitted) 2,000) Mn-Zn ferrite. These results are compared with those of conventional ring-shaped electrodeless fluorescent lamp. It is found that the resistance, inductance and impedance are increased while the quality factor decreases as frequency increases.s.