• Title/Summary/Keyword: maximum-likelihood detection

Search Result 250, Processing Time 0.023 seconds

Weak Signal Detection in a Moving Average Model of Impulsive Noise (충격성 잡음의 이동 평균 모형에서 약신호 검파)

  • Kim In Jong;Lee Jumi;Choi Sang Won;Park So Ryoung;Song Iickho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.523-531
    • /
    • 2005
  • We derive decision regions of the maximum likelihood(ML) and suboptimum ML(S-ML) detectors in the first order moving average(FOMA) of an impulsive process. The ML and S-ML detectors are compared in terms of the bit-error-rate in the antipodal signaling system. Numerical results show that the S-ML detector, despite its reduced complexity and simpler structure, exhibits practically the same performance as the optimum ML detector. It is also shown that the performance gap between detectors for FOMA and independent and identically distributed noise becomes larger as the degree of noise impulsiveness increases.

Performance of MIMO-FQPSK Receivers with MLSE (MLSE 기반 MIMO-FQPSK 수신기 성능 분석)

  • Kim, Sang-Heon;Jung, Sung-Hun;Shin, Myeong-Cheol;Lee, Cyung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.18-23
    • /
    • 2007
  • In this Paper, we consider multiple input multiple output Feher-patented quadrature phase shift keying (MIMO-FQPSK) system supporting high spectral efficiency and throughput. Based on the fact that the complex baseband signal sampled at every bit duration has only eight phase values and its signal can be considered as 8-phase-shift keying signal, FQPSK demodulation with maximum likelihood sequence estimation(MLSE) is considered and it is extended to MIMO system. The performance of MIMO-FQPSK receiver is analyzed by computer simulation and by considering the union upper bounds for zrero forcing detection and minimum mean square error detection.

Depth-first branch-and-bound-based decoder with low complexity (검출 복잡도를 감소 시키는 Depth-first branch and bound 알고리즘 기반 디코더)

  • Lee, Eun-Ju;Kabir, S.M.Humayun;Yoon, Gi-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2525-2532
    • /
    • 2009
  • In this paper, a fast sphere decoder is proposed for the joint detection of phase-shift keying (PSK) signals in uncoded Vertical Bell Laboratories Layered Space Time (V-BLAST) systems. The proposed decoder, PSD, consists of preprocessing stage and search stage. The search stage of PSD relies on the depth-first branch-and-bound (BB) algorithm with "best-first" orders stored in lookup tables. Simulation results show that the PSD is able to provide the system with the maximum likelihood (ML) performance at low complexity.

MIMO Detection Algorithms in Binary PAM DS UWB Communication (이진 PAM DS UWB 통신에서 MIMO 검출 기법)

  • Kang, Yun-jeong;Kim, Gil-nam;Kim, Sang-choon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.447-450
    • /
    • 2009
  • In this paper, binary pulse-antipodal modulation (2PAM) direct-sequence (DS) ultra-wideband (UWB) system is applied to multiple input multiple output (MIMO) system using vertical bell lab layered space-time (V-BLAST) structure to achieve high-data-rate communications over indoor wireless channels. The relationship between antenna dimension and BER performance of 2PAM DS UWB MIMO system is discussed. In the receiver of UWB-MIMO system, various MIMO detection algorithms such as zero-forcing (ZF), ZF-ordered successive interference cancellation (OSIC), minimum-mean-square-error (MMSE), MMSE-OSIC and maximum likelihood (ML) are comparatively studied.

  • PDF

Bayesian Inference for Modified Jelinski-Moranda Model by using Gibbs Sampling (깁스 샘플링을 이용한 변형된 Jelinski-Moranda 모형에 대한 베이지안 추론)

  • 최기헌;주정애
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.183-192
    • /
    • 2001
  • Jelinski-Moranda model and modified Jelinski-Moranda model in software reliability are studied and we consider maximum likelihood estimator and Bayes estimates of the number of faults and the fault-detection rate per fault. A gibbs sampling approach is employed to compute the Bayes estimates, future survival function is examined. Model selection based on prequential likelihood of the conditional predictive ordinates. A numerical example with simulated data set is given.

  • PDF

Analytical BER Expression of the Optimal Single User Detection of a BPSK Signal in the Presence of a Gaussian CCI (가우시안 동일 채널 간섭하에서 BPSK 신호의 최적 단일 사용자 검출의 정확한 BER 수식)

  • Chung, Kyuhyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.491-496
    • /
    • 2014
  • We derive an analytical expression for the bit-error rate (ber) of optimal single user detection (osud) of a binary phase-shift keying (bpsk) signal corrupted by a gaussian cochannel interferer (cci). the channel capacity is also calculated to investigate the ber performance.

Low Complexity Noise Predictive Maximum Likelihood Detection Method for High Density Perpendicular Magnetic Recording: (고밀도 수직자기기록을 위한 저복잡도 잡음 예측 최대 유사도 검출 방법)

  • 김성환;이주현;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.562-567
    • /
    • 2002
  • Noise predictive maximum likelihood(NPML) detector embeds noise predictions/ whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This paper shows that NP(1221)ML system through noise predictive PR-equalized signal has less complexity and better performance than high order PR(12321)ML system in high density perpendicular magnetic recording. The simulation results are evaluated using (1) random sequence and (2) run length limited (1,7) sequence, and they are applied to linear channel and nonlinear channel with normalized linear density $1.0{\leq}K_p{\leq}3.0$.

Implementation of Noise Predictive Maximum Likelihood Detector in High Density Perpendicular Magnetic Recording (고밀도 수직자기기록에서 잡음 예측 최대 유사도 시스템에 대한 검출기 구현)

  • 김성환;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.336-342
    • /
    • 2003
  • Noise predictive maximum likelihood(NPML) detector embeds noise prediction/whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This thesis random sequences are applied to linear channel. In perpendicular magnetic recording density KP=2.5, NP(121)ML and NP(1221)ML detection system which is based on a noise predictive PR-equalized signal are evaluated by the Performance through a computing simulation. Therefore, NPML systems are implemented and are verified by VHDL.

A Reduced Complexity QRM-MLD for Spatially Multiplexed MIMO Systems (공간다중화 방식을 사용하는 다중 안테나 시스템을 위한 감소된 계산량의 QRM-MLD 신호검출기법)

  • Im, Tae-Ho;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1C
    • /
    • pp.43-50
    • /
    • 2007
  • In the paper, we address QRM-MLD (Maximum Likelihood Detection with QR Decomposition and M-algorithm) signal detection method for spatially multiplexed MIMO (Multiple Input Multiple Output) systems. Recently, the QRM-MLD signal detection method which can achieve 1Gbps transmission speed for next generation mobile communication was implemented in a MIMO testbed for the mobile moving at a pedestrian speed. In the paper, we propose a novel signal detection method 'reduced complexity QRM-MLD' that achieves identical error performance as the QRM-MLD while reducing the computational complexity significantly. We rigorously compare the two detection methods in terms of computational complexity to show the complexity reduction of the proposed method. We also perform a set of computer simulations to demonstrate that two detection methods achieve identical error performance.

PRML detection using the patterns of run-length limited codes (런-길이 제한 코드의 패턴을 이용한 PRML 검출 방법)

  • Lee Joo hyun;Lee Jae jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.77-82
    • /
    • 2005
  • Partial response maximum likelihood (PRML) detection using the Viterbi algorithm involves the calculation of likelihood metrics that determine the most likely sequence of decoded data. In general, it is assumed that branches at each node in the trellis diagram have same probabilities. If modulation code with minimum and maximum run-length constraints is used, the occurrence ratio (Ro) of each particular pattern is different, and therefore the assumption is not true. We present a calculation scheme of the likelihood metrics for the PRML detection using the occurrence ratio. In simulation, we have tested the two (1,7) run-length-limited codes and calculated the occurrence ratios as the orders of PR targets are changed. We can identify that the PRML detections using the occurrence ratio provide more than about 0.5dB gain compared to conventional PRML detections at 10/sup -5/ BER in high-density magnetic recording and optical recording channels.