• Title/Summary/Keyword: maximum viscosity

Search Result 510, Processing Time 0.022 seconds

Design Optimization for Air Ducts and Fluid Pipes at Electromagnetic Pulse(EMP) Shield in Highly Secured Facilities (EMP 방호시설의 덕트 및 배관 최적 설계 방안)

  • Pang, Seung-Ki;Kim, Jae-Hoon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • This study conducted a computational fluid dynamics(CFD) analysis to find an appropriate diameter or sectional area of air ducts and fluid pipes which have an electromagnetic pulse(EMP) shied to protect indoor electronic devices in special buildings like military fortifications. The result shows that the optimized outdoor air intake size can be defined with either the ratio of the maximum air velocity in the supply duct to the air intake size, or the shape ratio of indoor supply diffuser to the outdoor air intake. In the case of water channel, the fluid velocity at EMP shield with the identical size of the pipe, decreases by 25% in average due to the resistance of the shield. The enlargement of diameter at the shield, 2 step, improves the fluid flow. It illustrated that the diameter of downstream pipe size is 1step larger than the upstream for providing the design flow rate. The shield increases friction and resistance, in the case of oil pipe, so the average flow velocity at the middle of the shield increase by 50% in average. In consideration of the fluid viscosity, the oil pipe should be enlarged 4 or 5 step from the typical design configuration. Therefore, the fluid channel size for air, water, and oil, should be reconsidered by the engineering approach when EMP shield is placed in the middle of channel.

Self-consolidating concrete filled steel tube columns - Design equations for confinement and axial strength

  • Lachemi, M.;Hossain, K.M.A.;Lambros, V.B.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.541-562
    • /
    • 2006
  • This paper compares the performance of axially loaded concrete filled steel tube (CFST) columns cast using a conventionally vibrated normal concrete (NC) and a novel self-consolidating concrete (SCC) made with a new viscosity modifying admixture (VMA). A total of sixteen columns with a standard compressive strength of about 50 MPa for both SCC and NC were tested by applying concentric axial load through the concrete core. Columns were fabricated without and with longitudinal and hoop reinforcement (Series I and Series II, respectively) in addition to the tube confinement. The slenderness of the columns expressed as height to diameter ratio (H/D) ranged between 4.8 and 9.5 for Series CI and between 3.1 and 6.5 for Series CII. The strength and ductility of SCC columns were found comparable to those of their NC counterparts as the maximum strength enhancement in NC columns ranged between 1.1% and 7.5% only. No significant difference in strain development was found due to the presence of SCC or NC or due to the presence of longitudinal and hoop reinforcement. Biaxial stress development in the steel tube as per von Mises yield criterion showed similar characteristics for both SCC and NC columns. The confined strength ($f^{\prime}_{cc}$) of SCC was found to be lower than that of NC and $f^{\prime}_{cc}$ also decreased with the increase of slenderness of the columns. Analytical models for the prediction of confined concrete strength and axial strength of CFST columns were developed and their performance was validated through test results. The proposed models were found to predict the axial strength of CFST columns better than existing models and Code based design procedures.

Preparation of Thermo-Responsive and Injectable Hydrogels Based on Hyaluronic Acid and Poly(N-isopropylacrylamide) and Their Drug Release Behaviors

  • Ha Dong In;Lee Sang Bong;Chong Moo Sang;Lee Young Moo;Kim So Yeon;Park Young Hoon
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 2006
  • Copolymers composed of hyaluronic acid (HA) and poly(N-isopropylacrylamide) (PNIPAAm) were prepared to create temperature-sensitive injectable gels for use in controlled drug delivery applications. Semi-telechelic PNIPAAm, with amino groups at the end of each main chain, was synthesized by radical polymerization using 2-aminoethanethiol hydrochloride (AESH) as the chain transfer agent, and was then grafted onto the carboxyl groups of HA using carbodiimide chemistry. The result of the thermo-optical analysis revealed that the phase transition of the PNIPAAm-grafted HA solution occurred at around 30$\∼$33$^{circ}C$. As the graft yield of PNIPAAm onto the HA backbone increased, the HA-g-PNIPAAm copolymer solution exhibited sharper phase transition. The short chain PNIPAAm-grafted HA ($M_{w}$=6,100) showed a narrower temperature range for optical turbidity changes than the long chain PNIPAAm-grafted HA ($M_{w}$=13,100). PNIPAAm-grafted HA exhibited an increase in viscosity above 35$^{circ}C$, thus allowing the gels to maintain their shape for 24 h after in vivo administration. From the in vitro riboflavin release study, the HA-g-PNIPAAm gel showed a more sustained release behavior when the grafting yield of PNIPAAm onto the HA backbone was increased. In addition, BSA released from the PNIPAAm-g-HA gels showed a maximum concentration in the blood 12 h after being injected into the dorsal surface of a rabbit, followed by a sustained release profile after 60 h.

Analysis of Traditional Process for Yukwa Making, a Korean Puffed Rice Snack(II) Pelleting, Drying, Conditioning and Additives (전통 유과가공공정의 분석(II): 반데기성형, 건조, 수분조절 및 부재료의 첨가)

  • Kang, Sun-Hee;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.818-823
    • /
    • 2002
  • Effects of pelleting, drying, conditioning, and additives on the characteristics of Yukwa (fried pellet) were determined. RVA maximum paste viscosity of Bandegi (waxy rice pellet) was the highest after 2 days of moisture conditioning process, and decreased 2 days later. Air bubbles in Bandegi were distributed uniformly but were not significantly affected by conditioning time. For higher expansion and softer texture of Yukwa, the optimum moisture content of dried and conditioned Bandegi was $14{\sim}17%$. The addition of soymilk and 25% alcohol (Soju) as additives was also effective for achieving higher expansion and soft texture of Yukwa, respectively. Larger air cells were distributed in the center and smaller ones on the edge of Yukwa.

Rheological Properties of the Wheat Flour Dough with Olive Oil (올리브유를 첨가한 빵 반죽의 리올로지 특성)

  • Lim, Sun-Heui;Kim, Seok-Young;Lee, No-Woon;Lee, Chi-Ho;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.749-753
    • /
    • 2004
  • Effects of olive oil on rheological properties of wheat flour dough were investigated through farinograph, amylograph, and extensograph, and by measuring wheat flour dough fermentation volume. Farinogram showed development time, stability, elasticity, and valorimeter value of olive oil-added wheat flour decreased, whereas water absorption and stability were similar to control (shortening 4%). Gelatinization temperature and maximum viscosity of wheat flour dough with olive oil decreased more than those of control as revealed by amylogram. Extensogram showed wheat flour area increased, whereas dough volume decreased in olive oil-added wheat flour dough.

Synthesis of flame retardant acrylic emulsion pressure sensitive adhesives by co-polymerization with phosphoric flame retardant monomer (인계 난연 단량체와의 공중합을 통한 난연성 수성 아크릴 에멀젼 점착제 제조)

  • Jeon, Min Seok;Jung, Ji Hun;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.135-139
    • /
    • 2019
  • In this work, flame retardant acrylic emulsion pressure sensitive adhesives were newly polymerized combining phosphorous flame retardant monomer and acrylic monomer like butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, acrylic acid, and 2-hydroxyethyl methacrylate. The process of polymerization showed 100% of conversion at solid content of 65%, and viscosity of acrylic emulsion was increased up to 5500 cps when phosphorous flame retardant monomer was added into acrylic emulsion. The structure of flame retardant acrylic emulsion was identified using FT-IR and thermal properties like glass transition temperature (Tg) were checked by differential scanning calorimeter (DSC). Acrylic emulsion without phosphorous flame retardant monomer had Tg of -44.1℃ and peel strength of 2,100gf/inch, however, flame retardant acrylic emulsion showed maximum Tg (-31.4℃) and peel strength of 200gf/inch when 15 part of phosphorous flame retardant monomer was added. Flammability test was also conducted to confirm the application of flame retardant acrylic emulsion as the flame retardant addtive.

Electric Conductance of Dilute Solutions of Lithium, Sodium and Potassium Chloride in Isopropanol_Water Mixtures (이소프로판올-물 混合溶媒中의 리튬, 나트륨 및 칼륨 鹽化沕 溶液의 電導度)

  • Byung-Rin Cho;Yong-Ja Lee;Jae-Bin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 1976
  • The conductances of dilute solutions of LiCl, NaCl and KCl in a series of isopropanol-water mixtures were determined at $30^{\circ}C$. The values of equivalent conductance agreed well with Debye-Huckel-Onsager equation and the limiting equivalent conductance was greatly reduced as the isopropanol content of the solvent was increased in accord with predictions based on solvent viscosity and dielectric properties. Also, the limiting equivalent conductance increased in sequence ${\Lambda}_{0,LiCl} < {\Lambda}_{0,NaCl} < {\Lambda}_{0,KCl} in 0.0, 0.1 and 0.2 mole fraction isopropanol, but {\Lambda}_{0,LiCl} < {\Lambda}_{0,KCl} < {\Lambda}_{0,NaCl} in 0.3 mole fraction ispropanol. The maximum Walden product, {\Lambda}_{0{\eta}0}$ was found in 0.1 mole fraction isopropanol for all electrolytes.

  • PDF

Graft Copolymerization to Proteins (II). Separation and Purification of Sericin, and Its Graft Copolymerization with Acrylonitrile (단백질에 대한 그라프트 공중합 (제2보). 세리신의 분리, 정제 및 아크릴로니트릴의 그라프트 공중합)

  • Iwhan Cho;Kwang-Kun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.309-315
    • /
    • 1976
  • An efficient separation method and the utilization of sericin are searched. Sericin was extracted with hot water from cocoons under atmospheric pressure. The separated sericin was gel-filtrated with Sephadex G-75 and G-150 at room temperature and at $70^{\circ}C$. The results indicated that sericin is consisted of only one fraction in elution diagram. In the graft copolymerization of acrylonitrile to sericin ceric ammonium nitrate was chosen as an initiatior. A maximum yield was obtained at certain concentration of the initiator confirming our previous experiments. Viscosity measurement of alkali-hydrolyzed graft copolymers indicated that the polyacrylonitrile graft had the molecular weight in the range of 7,000.

  • PDF

Fabrication of $Y_2O_3-ZrO_2$ and $CaO-ZrO_2$ Fibers by Sol-Gel Process and Their Phase Characterization by Raman Microprobe (졸-겔법에 의한 $Y_2O_3-ZrO_2$계와 $CaO-ZrO_2$계 섬유의 제조 및 Raman Microprobe에 의한 상분석)

  • 황진명;은희태;권혁기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.104-114
    • /
    • 1994
  • ZrO2 fibers were fabricated by means of the Sol-Gel process using Zr(O-nC3H7)4-H2O-C2H5OH-HNO3 solution as a starting material. The optimum experimental parameters such as molar ratio of starting materials, concentration, temperature, viscosity, the amounts of stabilizer and the pH of solution were determined. The experimentally determined optimum variables which produce good ZrO2 fibers were used to manufacture the Y2O3-and CaO-ZrO2 fibers. The amounts of Y2O3 and CaO were varied within the range from 1.5~5 mol% and 3~15 mol% respectively. The phase transformation and microstructural evolution of the fabricated ZrO2 gel fibers were investigated after heat treatments up to 120$0^{\circ}C$ by X-ray diffraction, Raman microprobe spectroscopy, SEM, and specific surface area and pore volume measurements. From the analysis of X-ray diffraction and Raman spectra, the phase of heat treated Y2O3-and CaO partially stabilized ZrO2 gel fibers(Y2O3:2.5~3 mol%, CaO:6~9 mol%) were identified as a tetragonal phase up to 100$0^{\circ}C$. The maximum tensile strength of 2.5Y2O3-97.5ZrO2 and 6CaO-94ZrO2 (in mol%) fibers heat treated at 100$0^{\circ}C$ for 1 hr was found be 1.3~2 GPa with diameters of 10~20 ${\mu}{\textrm}{m}$.

  • PDF

Rheological Properties of Dough with Whole Wheat Flour (전립분 첨가 반죽의 물리적 특성)

  • 김영호;최광수;손동화;김정호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.817-823
    • /
    • 1996
  • The rheological prouerties of dough were evaluated the dough added whole wheat flour during breadmaking. From the farinogram, water absorption of the dough was decreased as the amount of coarse whole wheat flour was increased. While water absorption of the dough was increased as the amount of fine whole wheat flour was increased. Arrival time and development time of the dough with coarse whole wheat flour were longer than those of fine whole wheat flour. As the amount of whole wheat flour was increased, the weakness was increased. Weakness of coarse whole wheat flour was higher than that of fine whole wheat flour. From the extensograph, extension and resistance to extension were decreased with increasing the amount of whole wheat flour. Resistance to extension of coarse whole wheat flour was higher than that of fine whole wheat flour. From the amylograph, as the amount of whole wheat flour increased, maximum viscosity was decreased gradually. Though the amount of coarse whole wheat flour and fine whole wheat flour was increased up to 30% and 50%, respectively, external characteristics of bread was remained in normal. As the amount of whole wheat flour was increased, the value of whiteness was decreased.

  • PDF