Browse > Article

Preparation of Thermo-Responsive and Injectable Hydrogels Based on Hyaluronic Acid and Poly(N-isopropylacrylamide) and Their Drug Release Behaviors  

Ha Dong In (School of Chemical Engineering, College of Engineering, Hanyang University)
Lee Sang Bong (School of Chemical Engineering, College of Engineering, Hanyang University)
Chong Moo Sang (School of Chemical Engineering, College of Engineering, Hanyang University)
Lee Young Moo (School of Chemical Engineering, College of Engineering, Hanyang University)
Kim So Yeon (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology)
Park Young Hoon (Department of Polymer Engineering, Sunchon National University)
Publication Information
Macromolecular Research / v.14, no.1, 2006 , pp. 87-93 More about this Journal
Abstract
Copolymers composed of hyaluronic acid (HA) and poly(N-isopropylacrylamide) (PNIPAAm) were prepared to create temperature-sensitive injectable gels for use in controlled drug delivery applications. Semi-telechelic PNIPAAm, with amino groups at the end of each main chain, was synthesized by radical polymerization using 2-aminoethanethiol hydrochloride (AESH) as the chain transfer agent, and was then grafted onto the carboxyl groups of HA using carbodiimide chemistry. The result of the thermo-optical analysis revealed that the phase transition of the PNIPAAm-grafted HA solution occurred at around 30$\∼$33$^{circ}C$. As the graft yield of PNIPAAm onto the HA backbone increased, the HA-g-PNIPAAm copolymer solution exhibited sharper phase transition. The short chain PNIPAAm-grafted HA ($M_{w}$=6,100) showed a narrower temperature range for optical turbidity changes than the long chain PNIPAAm-grafted HA ($M_{w}$=13,100). PNIPAAm-grafted HA exhibited an increase in viscosity above 35$^{circ}C$, thus allowing the gels to maintain their shape for 24 h after in vivo administration. From the in vitro riboflavin release study, the HA-g-PNIPAAm gel showed a more sustained release behavior when the grafting yield of PNIPAAm onto the HA backbone was increased. In addition, BSA released from the PNIPAAm-g-HA gels showed a maximum concentration in the blood 12 h after being injected into the dorsal surface of a rabbit, followed by a sustained release profile after 60 h.
Keywords
hyaluronic acid; poly(N-isopropylacrylamide); injectable gel; drug delivery;
Citations & Related Records

Times Cited By Web Of Science : 33  (Related Records In Web of Science)
Times Cited By SCOPUS : 28
연도 인용수 순위
1 S. Cai, Y. Liu, X. Z. Shu, and G. D. Prestwich, Biomaterials, 26, 6054 (2005)   DOI   ScienceOn
2 K. Y. Cho, T. W. Chung, B. C. Kim, M. K. Kim, J. H. Lee, W. R. Wee, and C. S. Cho, J. of Pharmaceutics, 260, 83 (2003)   DOI   ScienceOn
3 Y. D. Park, N. Tirelli, and J. A. Hubbell, Biomaterials, 24, 893 (2003)   DOI   ScienceOn
4 H. G. Schild, Prog. Polym. Sci., 17, 163 (1992)
5 R. Yoshida, K. Sakai, T. Okano, and Y. Sakurai, J. Biomat. Sci.-Polym. E, 6, 585 (1994)
6 G. Chen and A. S. Hoffman, Bioconjugat. Chem., 4, 509 (1993)   DOI   ScienceOn
7 H. K. Ju, S. Y. Kim, S. J. Kim, and Y. M. Lee, J. Appl. Polym. Sci., 83, 1128 (2002)   DOI   ScienceOn
8 S.Y. Kim, S. M. Cho, Y. M. Lee, and S. J. Kim, J. Appl. Polym. Sci., 78, 1381 (2000)   DOI   ScienceOn
9 Y. C. Bae, S. M. Lander, D. S. Soane, and M. Prauzsnitz, Macromolecules, 24, 4403 (1991)   DOI
10 L. G. Griffith, Acta Materialia, 48, 263 (2000)   DOI   ScienceOn
11 S. Ohya, H. Sonoda, Y. Nakayama, and T. Matsuda, Biomaterials, 26, 655 (2005)   DOI   ScienceOn
12 J. A. Hubbell, Curr. Opin. Solid St. M., 3, 246 (1998)   DOI   ScienceOn
13 T. A. Holland, Y. Tabata, and A. G. Mikos, J. Control. Release, 91, 299 (2003)   DOI
14 A. S. Hoffman, Adv. Drug Deliver. Rev., 43, 3 (2002)
15 S. Kim and K. E. Healy, Biomacromolecules, 4, 1214 (2003)   DOI   ScienceOn
16 Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai, and T. Okano, Macromolecules, 28, 7717 (1995)   DOI   ScienceOn
17 A. Gutowska, B. Jeong, and M. Jasionowski, The Anatomical Record, 263, 342 (2001)   DOI   ScienceOn
18 M. R. Kim and T. G. Park, J. Control. Release, 80, 69 (2002)   DOI
19 S. R. Van Tomme, M. J. van Steenbergen, S. C. De Smedt, C. F. van Nostrum, and W. E. Hennink, Biomaterials, 26, 2129 (2005)   DOI   ScienceOn
20 J. H. Kim, S. B. Lee, S. J. Kim, and Y. M. Lee, Polymer, 43, 7549 (2002)   DOI   ScienceOn
21 X. Z. Shu, Y. Liu, F. S. Palumbo, Y. Luo, and G. D. Prestwich, Biomaterials, 25, 1339 (2004)   DOI   ScienceOn
22 M. Ebara, T. Aoyagi, K. Sakai, and T. Okano, Macromolecules, 33, 8312 (2000)   DOI   ScienceOn
23 J. L. West and J. A. Hubbell, Macromolecules, 32, 241 (1999)   DOI   ScienceOn
24 Y. Kanejo, S. Nakamura, K. Sakai, A. Kikuchi, T. Aoyagi, and T. Okano. Polym. Gels Netw., 6, 333 (1988)   DOI   ScienceOn
25 B. K. Mann, A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West, Biomaterials, 22, 3045 (2001)   DOI   ScienceOn
26 T. Inoue, G. Chen, K. Nakamae, and A. S. Hoffman, Polym. Gels Netw., 5, 561 (1997)   DOI   ScienceOn
27 H. Liu, Y. Yin, K. Yao, D. Ma, L. Cui, and Y. Cao, Biomaterials, 25, 3523 (2004)   DOI   ScienceOn
28 J. Zhang and N. A. Peppas, Macromolecules, 33, 102 (2000)   DOI   ScienceOn
29 K. Pietrucha, Int. J. Biol. Macromol., 36, 299 (2005)   DOI   ScienceOn
30 A. Chenite, C. Chaput, D. Wang, C. Combes, M. D. Buschmann, C. D. Hoemann, J. C. Leroux, B. L. Atkinson, F. Binette, and A. Selmani, Biomaterials, 21, 2155 (2000)   DOI   ScienceOn
31 H. K. Ju, S. Y. Kim, and Y. M. Lee, Polymer, 42, 6851 (2001)   DOI   ScienceOn