• Title/Summary/Keyword: maximum viscosity

Search Result 510, Processing Time 0.028 seconds

Experimental Thermal Analysis of Hydraulic System in a Special Vehicle (특장차량 유압시스템 내 열적 특성 분석)

  • Choi, Yu Hyun;Lee, Sang Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Experimental analysis has been carried out to investigate thermal characteristics of hydraulic system in special vehicles. Hydraulic system performance is largely influenced by oil temperature, and there are considerable performance decline and malfunctions in the system for high temperature conditions caused by heavy load and continuous operation. Transient oil temperature and pressure variation are analyzed and heat generation rates in the several main system parts are compared for various flow rates. With the start of system operation oil temperature gradually increases, and viscosity deceases by about 70% as temperature increases from $20^{\circ}C$ to $80^{\circ}C$. Operation pressure in the hydraulic system decreases with oil temperature, and its variation rate becomes less steep as oil temperature increases. Heat generation rate in hydraulic pump also depends on the oil temperature, and it reaches maximum near $50^{\circ}C$. These results in this study can be applied to optimal design of efficient hydraulic system in special vehicles.

A Study on Oil Diffusion in the Soil under Railroad Track using 2-D Reactor (2-D 반응기를 이용한 선로 하부 토양 내 유류 확산에 관한 연구)

  • Kang, Hae-Suk;Kwon, Tae-Soon;Jung, Woo-Sung;Lee, Jae-Young;Cho, Young-Min;Jeon, Yong-Sam
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.982-984
    • /
    • 2008
  • Generally, the soil around railroad is contaminated by the leakage of oil during its maintenance or the operation of rolling stock. Because the railroad soil is located under ballast and is hardened with the designated strength due to safety, the characteristics of the polluted site are different. In this study, the phenomena of oil diffusion in the railroad site was investigated using 2-D reactor. The used oil was lubricant. As a result, the maximum diffusion depth of lubricant was about 9.5 cm due to its high viscosity and the hardened soil. The lubricant was diffused by gravity more than by horizontal migration. In the future, these results can be applied to develop a remediation method for the contaminated railroad soil.

  • PDF

Multifunctional Robotic Guidewire System using Spiral-type Magnetic Microrobot with Magnetic Manipulation

  • Yu, Chang-Ho;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.616-621
    • /
    • 2016
  • This paper presents a new multifunctional active guidewire system for medical applications that uses a magnetic microrobot. The study demonstrated that the proposed microrobot system could swim and be controlled under Low-Reynolds-number (Re) environments in blood vessel models. The prototype of the robotic guidewire, which is driven within a three-axis Helmholtz coil system, consists of a guide-wire, spiral blade, drilling tip, and permanent magnet. The spiral-type microrobot showed stable active locomotion between 3 kA/m and 9.1 kA/m under driving frequency up to 70 Hz in a silicone oil (of viscosity 1000 cst). The microrobot produced a maximum moving velocity of $8.08{\times}10^{-3}m/s$ at 70 Hz and 9.1 kA/m. In particular, the robotic guidewire produced 3D locomotion with drilling in the three-axis Helmholtz coil system. We verified active locomotion, towing of guidewire, steering, and drilling of the proposed robotic guidewire system through experimental analyses.

ASSESSMENT OF THE SAFETY OF ULCHIN NUCLEAR POWER PLANT IN THE EVENT OF TSUNAMI USING PARAMETRIC STUDY

  • Kim, Ji-Young;Kang, Keum-Seok
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.175-186
    • /
    • 2011
  • Previous evaluations of the safety of the Ulchin Nuclear Power Plant in the event of a tsunami have the shortcoming of uncertainty of the tsunami sources. To address this uncertainty, maximum and minimum wave heights at the intake of Ulchin NPP have been estimated through a parametric study, and then assessment of the safety margin for the intake has been carried out. From the simulation results for the Ulchin NPP site, it can be seen that the coefficient of eddy viscosity considerably affects wave height at the inside of the breakwater. In addition, assessment of the safety margin shows that almost all of the intake water pumps have a safety margin over 2 m, and Ulchin NPP site seems to be safe in the event of a tsunami according to this parametric study, although parts of the CWPs rarely have a margin for the minimum wave height.

Quality Characteristics of Dumpling Shell made with Mulberry Leaf (Morus alba Linne) Powder (뽕잎 분말을 첨가한 만두피의 품질 특성)

  • Park, In-Duck
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • This study examined the quality characteristics of dumpling shells prepared with 0, 2, 4, 6, and 8% mulberry leaf powder. According to the amylograph data, the composite of mulberry leaf powder-wheat flour samples reduced the gelatinization temperatures, viscosities at $95^{\circ}C$, and maximum viscosity with increasing mulberry leaf powder content. The lightness (L) and redness (a) values decreased with increasing mulberry leaf powder content, whereas the yellowness (b) value increased. In addition, the weight, volume, and turbidity increased after cooking. In terms of the textural characteristics, addition of mulberry leaf powder increased the hardness, springiness, cohesiveness, chewiness, and adhesiveness. The DPPH free radical scavenging activity of the dumpling shells increased significantly (p<0.05) with increasing levels of mulberry leaf powder. The taste, chewiness and texture of the dumpling shells prepared with added 4% mulberry leaf powder were preferred. The sensory evaluation showed that the overall preference of the dumpling shell with the addition of 4% mulberry leaf powder was more effective than the control.

Liquid culture condition of Tremella fuciformis mycelia (흰목이 균사 액체배양 조건)

  • Chang, Hyun-You;Lee, Chan;Choi, Sung-Woo;Yun, Jong Won
    • Journal of Mushroom
    • /
    • v.6 no.1
    • /
    • pp.27-31
    • /
    • 2008
  • The optimization of submerged culture conditions for mycelial growth and exopolysaccharide (EPS) production in an edible mushroom Tremella fuciformis were studied in shake flasks and bioreactors. The temperature of $28^{\circ}C$ and pH 8 in the beginning of fermentation in agitated flasks was the most efficient condition to obtain maximum mycelial biomass and EPS. The optimal medium constituents were as follows (g l-1): glucose 20, tryptone 2, $KH_2PO_4$ 0.46, $K_2HPO_4$ 1 and $MgSO_4H_2O$ 0.5. The fungus was cultivated under various agitation and aeration conditions in a 5L stirred-tank bioreactor. The maximum cell mass and EPS production were obtained at a relatively high agitation speed of 200 rpm and at an aeration rate of 2 vvm. The flow behavior of the fermentation broth was Newtonian and the maximum apparent viscosity (35 cP) was observed at a highly aerated condition (2 vvm). The EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor. The EPS was protein-bound polysaccharides consisted of mainly mannose, xylose, and fructose. The molecular weights of EPS were determined to be $1.3{\sim}1.5{\times}10^6$.

  • PDF

Production of extracellular polysaccharide by Monilinia fructigena for aquaculture

  • Kwak Jung-Ki;Park Jin-Hee;Lee Jung-Suck;Goetz Peter;Cho Man-Gi
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.182-188
    • /
    • 1999
  • Production of extracellular polysaccharide by Monilinia fructigena in B-I medium containing cereals was higher than that in glucose medium. Productivities in B-I medium and glucose medium were 0.7g/l nd 0.2-03g/l respectively. The maximum content of polysaccharide occurred at the rising point from the lowest pH of culture. As the apparent viscosity of the polysaccharide solution increased, the flow Index (m) decreased, and the consistency Index (Kc) also increased. The polysaccharide solution was a typical pseudoplastic fluid. The mycelium was separated from the culture solution by $300\mu m$ mesh-filter and the polysaccharide was precipitated by adding 50% of ethanol (v/v). The amount of the polysaccharide removed from the filtrated solution was 0.45 g/l and the amount adhered to the mycelium was 0.25g/l. In experiments for investigating growth enhancement of rotifer (Brachionus plicatilis) by the polysaccharide, the dose of the polysaccharide was 1mg per 10,000 organisms of rotifer. Maximum specific growth rate of rotifer with feed consisting of sea Chlorella sp. and the polysaccharide was 1.095/day in the batch culture for 10 days. A semi-continuous culture was done for 30 days, the biomass of rotifer could be harvested twice. Maximum specific growth rate with sea Chlorella sp. and the polysaccharide was 0.734/day before the first harvest, and 1.685/day before the second harvest. Productivity was 38 $cells/ml\; \cdot\; day$ with sea Chlorella sp. and the polysaccharide.

  • PDF

Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository (심층처분장 처분공 주변 굴착손상영역에 존재하는 불연속면으로의 압축 벤토나이트 침투)

  • Lee, Changsoo;Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.193-213
    • /
    • 2020
  • A mathematical model to simulate more realistically the penetration of compacted bentonite buffer installed in the deposition hole into the discontinuity in the excavation damaged zone formed at the inner wall of the deposition hole in the geological repository for spent fuel is developed. In this model, the penetration of compacted bentonite is assumed to be the flow of Bingham fluid through the parallel planar rock fracture. The penetration of compacted bentonite is analyzed using the developed model. The results show that the maximum penetration depth of compacted bentonite into the rock fracture is proportioned to the swelling pressure of saturated compacted bentonite and the aperture of rock fracture. However, it is in inverse proportion to the yield strength of compacted bentonite. The viscosity of compacted bentonite dominates the penetration rate of compacted bentonite, but has no influence to the maximum penetration depth.

Synthesis of Sulfonated Poly(styrene-co-DVB) Hyper Branched Cationic Exchange Resin and Its Properties (하이퍼브랜치 Poly(styrene-co-DVB) 설폰화 양이온교환 수지의 합성 및 특성)

  • Baek, Ki-Wan;Yeom, Bong-Yeol;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • In this study, the hyper branched poly (styrene-co-divinylbenzene) (PSD) was synthesized by bulk polymerization and the cationic exchanger with high ion exchange capacity was prepared by sulfonation. The structure of hyper branched PSD ion exchanger was investigated by FT-IR, $^1H-NMR$ spectroscopy, and GPC analysis. The molecular weight, viscosity of hyper branched PSD increased with DVB content, which have the maximum values of 9410g/mol and 338 cP, respectively. And the reaction rate also increased with cross-linker content. As DVB content increased, the solubility of PSD decreased having the maximum value of 22 g with 0.1 mol% DVB. The water content and ion exchange capacity of the hyper branched PSD ion exchanger increased with the amount of sulfuric group. Their maximum values were 18.2% and 4.6 meq/g, respectively. The adsorption of copper and nickel ion was completed within 40 min.

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (II): Mineralogical Characteristics, Surface Area, Rheological Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (II): 광물학적 특징, 체표면적 및 유변학적 특성과 그 연계성)

  • 노진환;유재영;최우진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-47
    • /
    • 2003
  • Various applied-mineralogical characterization including measurements of surface area, size distribution, swelling index, and viscosity were done for some domestic bentonites in order to decipher the rheological properties and their controlling factors. The bentonites, which are Ca-type and relatively low-grade (rnontmorillonite contents: 30 ∼ 75 wt%), occur mostly as subhedral lamellas with the size range of 2 ∼ 4 $\mu\textrm{m}$. The size distribution of mineral fractions in bentonite suspension is dominant in the range of 10 ∼ 100 $\mu\textrm{m}$, and though rather complicated, exhibits roughly bimodal patterns. The feature is more conspicuous in the case of zeolitic bentonite. The bentonites have surface areas ranging 269 ∼ 735 $\m^2$/g, which are measured by EGME adsorption method. The EGME surface areas are nearly proportional to the rnontmorillonite contents, moisture contents, or total CEC. In the surface area measurements, zeolitic bentonites have slightly higher values than those zeolite- free types. The measured swelling index and viscosity of domestic bentonites are comparatively low in values. The swelling values of bentonites were measured to be 250∼500% at maximum by progressively mixing amounts of 2 ∼ 5 wt% Na$_2$CO$_3$, which varies depending on the contents of rnontmorillonite and other impurities, especially zeolite. Much amount of sodium carbonate is required for optimum swelling property of zeolitic bentonited which has usually strong Na- exchanged capacity. The bentonites, which are comparatively feldspar-rich and low in size and crystallinity, tend to be higher in viscosity values. Tn addition, the viscosity is largely higher in case of the bentonites with higher pH in suspension. However, the rheological properties of bentonites such as swelling index and viscosity do not show any obvious relationships with rnontmorillonite contents and mean particle size in suspension. In contrast, roughly speaking, the swelling index of bentonites is reversely proportional to the values of surface area which can be regarded as a collective physico-chemical parameter encompassing all the effects caused by mineral composition, surface charge, particle size, morphological farm, and etc. in bentonites. Thus, the rheological properties in bentonite suspension appear to be rather complicated characteristics which mainly depend on the flocculation of clay particles and the mode of particle association, i.e. quasicrystals, controlled by surface charge, morphology, size, and texture of rnon-tmorillonite, and which partly affected by the finer impurities such as zeolite.