DOI QR코드

DOI QR Code

Multifunctional Robotic Guidewire System using Spiral-type Magnetic Microrobot with Magnetic Manipulation

  • Yu, Chang-Ho (Department of Convergence Technology Engineering, Chonbuk National University) ;
  • Kim, Sung Hoon (Department of Electronics Convergence Engineering, Wonkwang University)
  • Received : 2016.11.21
  • Accepted : 2016.12.08
  • Published : 2016.12.31

Abstract

This paper presents a new multifunctional active guidewire system for medical applications that uses a magnetic microrobot. The study demonstrated that the proposed microrobot system could swim and be controlled under Low-Reynolds-number (Re) environments in blood vessel models. The prototype of the robotic guidewire, which is driven within a three-axis Helmholtz coil system, consists of a guide-wire, spiral blade, drilling tip, and permanent magnet. The spiral-type microrobot showed stable active locomotion between 3 kA/m and 9.1 kA/m under driving frequency up to 70 Hz in a silicone oil (of viscosity 1000 cst). The microrobot produced a maximum moving velocity of $8.08{\times}10^{-3}m/s$ at 70 Hz and 9.1 kA/m. In particular, the robotic guidewire produced 3D locomotion with drilling in the three-axis Helmholtz coil system. We verified active locomotion, towing of guidewire, steering, and drilling of the proposed robotic guidewire system through experimental analyses.

Keywords

References

  1. J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. X. Dong, I. K. Kaliakatsos, and B. J. Nelson, Int. J. Robot. Res. 28, 1434 (2009). https://doi.org/10.1177/0278364909341658
  2. A. Ghosh and P. Fischer, Nano Lett. 9, 2243 (2009). https://doi.org/10.1021/nl900186w
  3. B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, Annual Review of Biomedical Engineering 12, 55 (2010). https://doi.org/10.1146/annurev-bioeng-010510-103409
  4. K. Ishiyama, M. Sendoh, and K. I. Arai, JMMM. 242, 41 (2002).
  5. S. H. Kim, S. Hashi, and K. Ishiyama, J. Appl. Phys. 109, 07E318 (2011). https://doi.org/10.1063/1.3554215
  6. L. Zhang, J. Abbott, L. Dong, K. D. Bell, and B. J. Nelson, Appl. Phys. Lett. 94, 064017 (2009).
  7. F. Qiu and B. J. Nelson, Engineering 1, 21 (2015). https://doi.org/10.15302/J-ENG-2015005
  8. S. Jeon, G. Jang, H. Choi, S. Park, and J. Park, IEEE Trans. Magn. 47, 2403 (2011). https://doi.org/10.1109/TMAG.2011.2148168
  9. S. H. Kim and K. Ishiyama, IEEE Trans. Mechatronics 19, 1651 (2013).
  10. S. Pane, O. Ergeneman, K. M. Sivaraman, T. Luhmann, H. Hall, and B. J. Nelson, Proc. IEEE Int' Conf. Nano/Molecular Medicine and Engineering 148 (2010).
  11. S. Yim and M. Sitti, IEEE Trans. Robotics 28, 183 (2012). https://doi.org/10.1109/TRO.2011.2163861
  12. Y. H. Kim, X. Xu, and J. S. Lee, Annals of Biomedical Engineering 38, 2274 (2010). https://doi.org/10.1007/s10439-010-9994-5
  13. S. M. Jeon and G. H. Jang, IEEE Trans. Magn. 48, 4062 (2012). https://doi.org/10.1109/TMAG.2012.2194480
  14. G. Lim, K. Park, M. Sugihara, K. Minami, and M. Esashi, Sensors Actuators A 56, 113 (1999).
  15. A. Sakes, E. Regar, J. Dankelman, and P. Breedveld, Cardiovascular Engineering and Technology 7, 103 (2016). https://doi.org/10.1007/s13239-016-0255-0
  16. S. Aramaki, S. Kaneko, K. Arai, Y. Takahashi, H. Adachi, and K. Yanagisawa, Proceedings of IEEE Sixth International Symposium on Micro Machine and Human Science 115 (1995).
  17. S. Sudo, S. Segawa, and T. Honda, Journal of Intelligent Material Systems and Structure 17, 729 (2006). https://doi.org/10.1177/1045389X06055828
  18. S. H. Kim, S. Hashi, and K. Ishiyama, IEEE Trans. Magn. 49, 3488 (2013). https://doi.org/10.1109/TMAG.2012.2237544

Cited by

  1. Development of Multiple Capsule Robots in Pipe vol.9, pp.6, 2018, https://doi.org/10.3390/mi9060259