• Title/Summary/Keyword: maximum sustainable yield(MSY)

Search Result 24, Processing Time 0.021 seconds

Application of Bootstrap and Bayesian Methods for Estimating Confidence Intervals on Biological Reference Points in Fisheries Management (부트스트랩과 베이지안 방법으로 추정한 수산자원관리에서의 생물학적 기준점의 신뢰구간)

  • Jung, Suk-Geun;Choi, Il-Su;Chang, Dae-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • To evaluate uncertainty and risk in biological reference points, we applied a bootstrapping method and a Bayesian procedure to estimate the related confidence intervals. Here we provide an example of the maximum sustainable yield (MSY) of turban shell, Batillus cornutus, estimated by the Schaefer and Fox models. Fitting the time series of catch and effort from 1968 to 2006 showed that the Fox model performs better than the Schaefer model. The estimated MSY and its bootstrap percentile confidence interval (CI) at ${\alpha}=0.05$ were 1,680 (1,420-1,950) tons for the Fox model and 2,170 (1,860-2,500) tons for the Schaefer model. The CIs estimated by the Bayesian approach gave similar ranges: 1,710 (1,450-2,000) tons for the Fox model and 2,230 (1,760-2,930) tons for the Schaefer model. Because uncertainty in effort and catch data is believed to be greater for earlier years, we evaluated the influence of sequentially excluding old data points by varying the first year of the time series from 1968 to 1992 to run 'backward' bootstrap resampling. The results showed that the means and upper 2.5% confidence limit (CL) of MSY varied greatly depending on the first year chosen whereas the lower 2.5% CL was robust against the arbitrary selection of data, especially for the Schaefer model. We demonstrated that the bootstrap and Bayesian approach could be useful in precautionary fisheries management, and we advise that the lower 2.5% CL derived by the Fox model is robust and a better biological reference point for the turban shells of Jeju Island.

Estimation of Fishery Resource Rebuilding and Economic Effects on Coastal Gill-net Fishery as a Result of Korean Vessel Buy-back Program (우리나라 어선감척사업의 연안자망어업에 대한 어자원회복 및 경제적 효과 추정)

  • Jeong, Minju;Nam, Jongoh
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.221-232
    • /
    • 2017
  • The purpose of this study is to estimate the extent of fisheries resource rebuilding and other economic effects on coastal gill-net fishery as a result of the Korean vessel buy-back program using with-without analysis based on methods estimating sustainable yields for all species caught by coastal gill-net fishery. Based on the results of with-without analysis, maximum sustainable yields (MSY) of all species caught by coastal gill-net fishery have been increased by the Korean vessel buy-back program. In addition, profits per vessel of maximum economic yield (MEY) of the species have been improved by the program. Further, yields and a producer surplus per vessel under an equilibrium of open access (OA) have increased because of the program. In detail, first of all, at the MSY level, the vessel buy-back program has led to about 21% fisheries resource recovery, and at the MEY level, it has led to about a 19% resource recovery. Secondly, at the MEY level and the OA level, the producer surplus per vessel has been increased by about 24% and 22% respectively by the vessel buy-back program.

A Policy Direction of Vessel Buyback Program for Coastal and Offshore Fisheries in Korea (우리나라 연근해어선감척사업의 정책방향에 관한 연구)

  • Pyo, Hee-Dong;Kwon, Suk-Jae
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.323-333
    • /
    • 2005
  • The paper is to serve as a guide for deciding on a desirable direction for the vessel buyback program, reviewing their performance and economic effects from fish harvest reduction due to not reaching MSY. Compared with maximum willingness to pay for vessel buyback programs designed to avoid economic losses occurring as a result of overfishing, the portions of investment costs for buyback program are so small comparatively to the range of 0.32% to 12.19% at the annual base. The economic loss effects occurred in terms of the reduction of fishing harvest are comprehensively estimated at the present value of 30,877 billion won since 1971, and exceeded the revenues for fish harvests from 1999. In order to resole fish stocks through a vessel buyback program, this paper recommends that the yield should be reduced to less than the intrinsic growth rate. Otherwise, the buyback program policy eventually fails regardless of the temporal effect of benefits. This paper further argues that technical policy tools such as fishing grounds, fishing seasons, size of fish and minimum size of meshes should be effectively utilized.

Estimation on Optimum Fishing Effort of Walleye Pollock Fishery in the East Coast of Korea : Based on the Economic Analysis between Danish Seine Fishery and Trawl Fishery for Walleye Pollock (한국 동해 명태 어업의 적정어획노력량 추정 -동해구기선저인망어업과 동해구트롤어업의 경제성분석을 근거로-)

  • 이장욱
    • The Journal of Fisheries Business Administration
    • /
    • v.22 no.2
    • /
    • pp.75-99
    • /
    • 1991
  • A quantitative analysis was carried out to monitor the commercial yield level of walleye pollock Theragra chalcogramma in the east coast of Korea, based on available data on catch and fishing effort, catch per unit of effort including fish prices from 1911 to 1988, using a traditional yield model. The results from the quantitative assessment were based to estimate maximum economic yield (MEY) and optimal fishing effort (E-opt) at MEY. On the other hand, interaction aspects between danish seine fishery and trawl fishery mainly targeting walleye pollock in the east coast of Korea were studied to predict optimal situation in fishing effort level from economic point of view which gives the most benefits to the two fisheries. Total production of walleye pollock in 1911 when its catch record was begun for the first time was about 12, 000 metric tons(M/T), and then the catch trend maintained nearly at the level of 50, 000 M/T per annum, showing a decreasing trend until 1930. The highest production from historical data base on walleye pollock fishery statistics was from the years in 1939 and 1940, about 270, 000 M/T and 26, 000 M/T, respectively. No production of the fish species was recorded during the years from 1943 to 1947, and from 1949 to 1951. From 1952 onwards annual production was only available from the southern part of 38$^{\circ}$N in the east coast. During two decades from 1952 to 1970, the production had sustained about less than 30, 000 M/T every year. Annual production showed an increasing trend from 1971, reaching a maximum level of approximately 162, 000 M/T in 1981. Afterwards, it has deceased sharply year after year and amounted to 180, 000 M/T in 1988. The catch composition of walleye pollock for different fishery segments during 1970~1988 showed that more than 70% of the total catch was from danish seine fishery until 1977 but from 1978 onwards, the catch proportion did not differ from one another, accounting for the nearly same proportion. Catch per unit of effort (CPUE) for both danish seine fishery and trawl fishery maintained a decline tendency after 1977 when the values of CPUE were at level of 800 kg/haul for the former fishery and 1, 300 kg/haul for the latter fishery, respectively. CPUEs of gillnet fishery during 1980~1983 increased to about 3.5 times as high value as in the years, 1970~1979 and during 1987~1988 it decreased again to the level of the years, 1970~1978. The bottom longline fishery's CPUE wa at a very low level (20 kg/basket) through the whole study years, with exception of the value (60 kg/basket) in 1980. Fishing grounds of walleye pollock in the east coast of Korea showed a very limited distribution range. Danish seine fishery concentrated fishing around the coastal areas of Sokcho and Jumunjin during January~February and October~December. Distributions of fishing grounds of trawl fishery were the areas along the coastal regions in the central part of the east coast. Gillnet and bottom longline fisheries fished walleye pollock mainly in the areas of around Sokcho and Jumunjin during January~February and December. Relationship between CPUEs' values from danish seine fishery and trawl fishery was used to standardize fishing effort to apply to surplus production model for estimating maximum sustainable yield (MSY) and optimum fish effort (F-opt) at MSY. The results suggested a MSY of 114, 000 M/T with an estimated F-opt of 173, 000 hauls per year. Based on the estimates of MSY and F-opt, MEY was estimated to be about 94, 000 M/T with a range of 81, 000 to 103, 000 M/T and E-opt 100, 000 hauls per year with a range of 80, 000 to 120, 000 hauls. The estimated values of MEY and E-opt corresponded to 82% of MSY and 58% of F-opt, respectively. An optimal situation in the fishing effort level, which can envisage either simultaneously maximum yield or maximum benefit for both danish seine fishery and trawl fishery, was determined from relationship between revenue and cost of running the fleet : the optimal fishing effort of danish seine fishery was about 52, 000 hauls per year, corresponding to 50 danish seiners and 27, 000 hauls per year which is equal nearly to 36 trawlers, respectively. It was anticipated that the net income from sustainable yield estimated from the respective optimal fishing effort of the two fisheries will be about 3, 800 million won for danish seine fishery and 1, 000 million won for trawl fishery.

  • PDF

Estimating optimal fishing effort of giant octopus, Enteroctopus dofleini by combo fishing - In the case of combo fishing in Gangwon - (대문어 연안복합어업의 경제적 적정어획노력량 추정 -강원도 연안복합어업을 대상으로-)

  • CHOI, Ji Hoon;KWON, Dae-Hyeon;LEE, Jue Bong;YANG, Jae Hyeong;KIM, Do Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.4
    • /
    • pp.333-342
    • /
    • 2018
  • In order to manage and rebuild fishery resources, the fishing effort should be controlled effectively. Especially in the setting up of the proper level of fishing efforts, economic standards as well as biological standards must be carefully considered to promote the sustainable and economically viable development of fisheries. This study is aimed to estimate optimal fishing effort of giant octopus by combo fishing which uses longline in Gangwon with statistical data. The result showed that current fishing effort is 28% higher than $E_{MEY}$. Unit fishing cost for each voyage will be 27% lower and unit fishing profit will be 17% higher than the current situation when the fishing effort meets $E_{MEY}$. Although current fishing effort is similar to the $E_{MSY}$, current catching is 16% higher than MSY and 22% higher than MEY.

Stock Assessment and Management Implications of Small Yellow Croker in Korean Waters (한국 근해 참조기의 자원평가 및 관리방안)

  • ZHANG Chang Ik;KIM Suam;YOON Seong-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.282-290
    • /
    • 1992
  • Based on surplus production models using fishery data for the last 20 years, a stock assessment was conducted for the small yellow croaker in Korean waters. The maximum sustainable yields (MSY) from the Schaefer and Fox models were estimated to be 37,000 metric tons (mt) and 33,450 mt. Zhang's model using time-series biomass with instantaneous coefficients of fishing mortality (F) and using time-series biomass and catch yielded MSY estimates of 45,328 mt and 40,160 mt, respectively. A yield-per-recruit analysis showed that the current yield per recruit of about 20g with F= 1.11 $yr^{-l}$, where the age at first capture $(t_c)$ is 0.604, was much lower than the maximum possible yield per recruit of 43g. Fixing $t_c$ at the current level and reducing fishing intensity (F) from 1.11 $yr^{-l}$ to 0.4 $yr^{-l}$ yielded only a small increase in predicted yield per recruit, from 20 to 25g. However, estimated yield per recruit increased to 43g by increasing $(t_c)$ from the current age (0.604) to age three with F fixed at the current level. This age at first capture corresponded to the optimal length which was obtained from the $F_{0.1}$ method. According to the analysis of stock recovery strategies employing the Zhang model, the optimum equilibrium biomass $(B^*_{MSY})$ which produces the maximum yield could be achieved after approximately five years at the lower fishing intensity (F=0.5).

  • PDF

Comparative analysis of stock assessment models for analyzing potential yield of fishery resources in the West Sea, Korea (서해 어획대상 잠재생산량 추정을 위한 자원평가모델의 비교 분석)

  • CHOI, Min-Je;KIM, Do-Hoon;CHOI, Ji-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.206-216
    • /
    • 2019
  • This study is aimed to compare stock assessment models depending on how the models fit to observed data. Process-error model, Observation-error model, and Bayesian state-space model for the Korean Western coast fisheries were applied for comparison. Analytical results show that there is the least error between the estimated CPUE and the observed CPUE with the Bayesian state-space model; consequently, results of the Bayesian state-space model are the most reliable. According to the Bayesian State-space model, potential yield of fishery resources in the West Sea of Korea is estimated to be 231,949 tons per year. However, the results show that the fishery resources of West Sea have been decreasing since 1967. In addition, the amounts of stock in 2013 are assessed to be only 36% of the stock biomass at MSY level. Therefore, policy efforts are needed to recover the fishery resources of West Sea of Korea.

Analysis for Fishing Effort of Diving Women In Cheju-Do (제주 해녀의 어획노력량 분석)

  • CHUNG Sang-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.4
    • /
    • pp.196-200
    • /
    • 1989
  • Fishery production of topshell in Cheju-do has been rapidly decreased in the last few years. To investigate the origin of this problem and estimate maximum sustainable yield (MSY) and catch per unit effort (CPUE) of topshell in Cheju-do, a survey has been done ysing the statistical data for 19 years (1968-1986) of topshell production in Cheju-do and data for 3 yea.5 (1984-1986) from an fishery village, Tonggui-ri, Pukcheju-gun, Cheju-do. Maximum sustainable yield of topshell in Cheju-do assumed to be 2,500-2,800 metric tons(M/T) per year. The annual fishery productions of topshell from 1982 to 1986 were 3,368, 3,649, 3,308, 3,136, and 1,400 M/T, respectively. These results show that topshell had been over-fished during 1982 to 1985. Because of the over-fishing, production sharply decreased down to 1,400 M/T in 1986. Total annual production of topshell in Tonggui-ri is a little less than one Percent of that of Cheju-do. To achieve this production, over the half of resistered diving women in this village have been worked. To estimate catch per unit effort of topshell in Cheju-do, it seems better to use the data which is the number of diving women who have been worked for certain period of time than the number of working days in the same period of time.

  • PDF

Study on natural short-necked clam, Ruditapes philippinarum, stocks in Yeongheung coast of Wando Island, Korea (완도 영흥지선 연안의 천연 바지락 자원에 대한 연구)

  • Cho, Sang-Man;Lee, Jong Hwa
    • The Korean Journal of Malacology
    • /
    • v.28 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • In order to understand the effect of introduction of oyster rack culture on natural short-necked clam, Ruditapes philippinarum, stock, we investigated the status of natural clam stock prior to introduction of oyster rack culture at Yeongheung Coast of Wando Island. The growth equation of the clam was estimated as: $L_t=61.46{\cdot}(1-e^{-0.172(t+0.155)})$ from ring radius composition of shell. Instantaneous coefficient of total mortality and natural mortality were calculated as: 2.4087/year and 0.478/year, respectively. The age at first capture was estimated to be 2.55 year. The total biomass was estimated to 3.23 ton in the bed (0.8 ha). Applied by these parameters, the annual recruit biomass and the current yield per recruit (Y/R) was corresponded to $114.7individuals/m^2$ and $92.0g/m^2$, respectively. Maximum sustainable yield (MSY) was estimated 0.77 ton/year which was close to annual catches, 0.74 ton/year, in the area.

A Study on Stock Assessment of Japanese Flying Squid (Todarodes pacificus) in Korea·China·Japan Waters (한·중·일 해역의 살오징어(Todarodes pacificus) 자원평가 연구)

  • Sungsu Lim;Do-Hoon Kim;Jae-Beum Hong
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.451-480
    • /
    • 2022
  • The Japanese Flying Squid (Todarodes pacificus) is a commercially important species in South Korea and the most popular species among consumers. However commercial catches of Japanese Flying Squid have been declining since 2000. In this study, we conducted a stock assessment to identify stock status. This study differed from previous studies in two aspects: a greater amount of available fishing effort data was used, and data from China, Japan, and Korea were included. A CMSY (catch-maximum sustainable yield) model was used to estimate MSY, biomass and exploitation with Bayesian state-space implementation of the Schaefer (BSS) model for the method of stock assessment, and evaluated the species by dividing into two groups, 'Korea' and ' Korea·China·Japan'. In all cases, Japanese flying squid biomass showed a general decreasing trend. Additionally, the biomass estimated for 2020 was lower than the biomass necessary to achieve the maximum sustainable yield. To manage Japanese Flying Squid effectively, it is necessary to strengthen the resource management strategies of individual countries and prepare a cooperative plan among countries.