• 제목/요약/키워드: maximum shear stress

검색결과 552건 처리시간 0.028초

큰에디모사법을 이용한 최적 디퓨져내의 난류유동 해석 (Large Eddy Simulation of Turbulent Flow in an Optimal Diffuser)

  • 임석현;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.811-814
    • /
    • 2002
  • Using a mathematical theory, we show that the optimality condition of a turbulent diffuser with maximum pressure recovery at the exit is zero shear stress along the wall. The optimal diffuser shape is designed through iterative procedures by using the $k-{\varepsilon}-{\nu}^{2}-f$ turbulence model for flow simulation. The Reynolds number based on the bulk mean velocity and the channel height at the diffuser entrance is 18,000. We also perform large eddy simulation to validate the shape design results and investigate the flow characteristics near the zero-skin friction wall. Results from large eddy simulation show that the skin friction is slightly higher than zero but is still very small as compared to that of the flat plate boundary layer flow Although the time-averaged wall shear stress is slightly above zero along the diffuser wall, instantaneous flow reversals occur intermittently. The streamwise mein velocity shows an asymptotic behavior of the half-power-law near the wall where the skin friction is close to zero.

  • PDF

Evaluation of Failure Theories to Determine the Wood Strength Variation with Grain Slope

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권5호
    • /
    • pp.465-473
    • /
    • 2009
  • Three failure theories were studied to evaluate the wood strength variation with grain slope. Maximum stress theory, Tsai-Hill theory and Hankinson formula were presented to hypothesize the failure of wood according to grain slope to loading direction. Red pine and Japanese larch were used as materials to simulate failure strength prediction with grain slope. Calculation of strength results was that the strength of wood drops rapidly between parallel to grain orientation (0 degree) and 15 degree grain orientation. The strength of wood with grain orientation were somewhat different at small grain angles among failure theories, and this tendency was due to tension and compression distinction, and shear accounting in each theories. For the above 45 degree grain orientation, the predicted failure strength of wood with grain variation were very close in each failure theories and were useful in assessing failure strength of wood. The applicable these theories should be considered that the wood has different behavior in tension and compression, and this lead to different strength at small grain angles in each theories. Furthermore, reconsideration is needed to assess the failure strength of wood at small grain angles in Hankinson formula and further studies are necessary to accounting for shear behavior at small grain angles.

모래지반내의 연직 지반앵커 표면의 마찰각 (Friction Angle on the Surface of Vertical Ground Anchor in Sand)

  • 임종철
    • 한국지반공학회지:지반
    • /
    • 제11권4호
    • /
    • pp.99-110
    • /
    • 1995
  • 본 연구에서는 정규압밀 건조 모래 지반내의 연직 강체 지반앵커에 대한 모형 인발실험을 실시해서 앵커 표면의 마찰각을 실측했다. 마찰각은 앵커 표면의 깊이 방향으로 설치된 다수의 2 방향 로드셀을 사용해서 측정된 수직응력, 전단응력으로 구했다. 실험은 평면변형률 앵커와 축대칭 앵커에 대해서 실시했는데 실험 분석 결과, 앵커표면의 최대마찰각은 평면변형률 압축시험에 의한 무신축방향의 면상의 응력경각의 최대치와 거의 일치한다는 것을 알았다. 이 결론은 모래의 강도 이방성과 구속압 의존성 등을 고려하여 얻은 것으로 앵커 표면 마찰각에 모래의 전단저항각을 적용해서 설계하면 위험측이 된다는 것도 알 수 있다.

  • PDF

티타니움의 절삭성에 관한 연구 (A Study on the Machinability of Titanium)

  • 정성규;오석형;서남섭
    • 한국정밀공학회지
    • /
    • 제6권2호
    • /
    • pp.40-46
    • /
    • 1989
  • Recently, the researches on cutting the new material have been done for development of aerospace industrial engineering. Especially, titanium ally is well known as heat resisting, antiwear, anticorrosion and difficult-to-machine materials. Many studies on the analysis of shear angle have been done for improving productivity in cutting these materials. In case of titanium alloy, the saw-toothed type of chip which has wave surface of a triangular form, an eccentric from of a continuous type of chip that is produced in the cutting process, was checked. Nakayama supposed that a maximum shear strewss plane and the shear crack in the free surface made an angle of $45^{\circ}$ .deg. , but it's usually much larger than that. In this paper, the author analyzed the shear conditions of the cutting process in the quick-stopping device with the help SEM-photographs, and measured the hypotenuse angle directly in the photographs of the chips. In conclusion, the author tried to find the shear angle in the cutting process with the saw-toothed chip and compared it with the shear angles which can be calculated from the theories established by others. The results obtained are as follows. 1. In case of the saw-toothed chips, the equivalent cutting ratio can be calculated by using the chip thickness to two-thirds of ramp height. 2. The theory of Ernst-Merchant is not applicable to the titanium and its alloys which does not fractured in accordance with the theory of maximum shear stress. 3. When we cut the titanium alloys which produced the saw-toothed chips, the shear angle can be found with the theories of Rowe-Spick, P.K. Wright and the measurement of hypotenuse angle.

  • PDF

풍화토-그라우트 인터페이스 전단 거동 특성에 대한 실험적 연구 (Experimental Study on the Residual Soil-Grout Interface-shearing Behavior )

  • 신규범;정충기;김인현;조범희
    • 한국지반공학회논문집
    • /
    • 제39권4호
    • /
    • pp.19-29
    • /
    • 2023
  • 본 연구에는 지반-그라우트 인터페이스 거동을 평가하기 위한 직접전단시험 장비를 제작하였으며, 제작된 시험 장비를 통해 풍화토, 풍화토-그라우트 두 종류의 시료에 대해 직접전단시험을 수행하였다. 전단응력-슬립 곡선 평가 결과 풍화토-그라우트의 잔류 전단 강도는 단일 풍화토의 잔류 전단 강도와 유사한 값을 나타냈으며, 풍화토-그라우트 인터페이스의 한계 상태 거동은 풍화토에 의해 결정된다는 것을 확인했다. 그러나, 최대 전단 강도의 경우 풍화토-그라우트 인터페이스에서 매우 크게 증가하는 것으로 나타났다. 최대 전단 강도의 증가율은 느슨한 지반에서 더 크게 발생하는 것으로 나타났으며, 이는 풍화토 입자와 그라우트 입자가 섞여 있는 인터페이스 레이어의 두께가 증가했기 때문으로 보인다.

풍화잔적토의 함수비 변화에 따른 전단거동특성 (Shear Behavioral Characteristics of Weathered Residual Soil for the Change Water Content)

  • 유남재;김영길;이종호
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.119-124
    • /
    • 1997
  • This thesis is an experimental research of shear behavioral characteristics and shear behavioral coefficient of weathered residual soil which is mostly contained in soil of Korea. Using the weathered residual soil from mountain near Kangwon National University, this experimental research were contained the physical properties of sample in term of the basic test method such as specific gravity, plastic and liquid limit, grain-size distribution, density and water content. Experimental results obtained from direct shear test sand triaxial compression tests show that according to step loading, linear strain and linear stress increase continually and angle of internal friction decreases just little according to incresing of water content in case of ignoring the cohesion, and angle of internal friction appears the maximum angle near a optimum moisture content in case of considering the cohesion.

  • PDF

Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint

  • Benchiha, Aicha;Madani, Kouider
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.1017-1030
    • /
    • 2015
  • In this study, the finite element method was used to analyze the distribution of the adhesive shear stresses in the single-lap bonded joint of two plates 2024-T3 aluminum with and without defects. The effects of the adhesive properties (shear modulus, the thickness and the length of the adhesive were highlighted. The results prove that the shear stresses are located on the free edges of the adhesively bonding region, and reach maximum values near the defect, because the concentration of high stress occurs near this area.

지중 RC 도시지하철고 구조물의 내진설계 (A Seismic Design of RC Underground Subway Structure)

  • 정제평;임동원;이성로;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

음향 여기에 의한 혼합층 유동구조의 변화에 대한 연구 (The Study on Changes of Mixing Layer Caused by Acoustic Excitation)

  • 정양범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.120-127
    • /
    • 2000
  • This study is concerned with evaluating the effects of acoustic excitation on the development of two stream mixing layer generated by split plate. The ratios of two velocities U1 and U2 either side of the splitter plate were such that $U_1/U_2$=1.0 (uniform flow) or $U_1/U_2$<1.0(shear flow). The mixing layers were disturbed acoustically through the edge of split plate. Quantitative data were obtained with hot-wire anemometry. Flow visualization with smoke-wire was also employed for qualitative study. the results show that the large scale structures of mixing layers are strongly affected by excitation frequency and amplitude in both uniform and shear flows. The maximum streamwise and vertical turbulent intensities of the excited flow fields are apt to be decreased as compared with those of without excitation. The flow characteristics of uniform flow are more influenced by acoustic excitation than those of shear flow.

  • PDF

전단박화유체의 수직상향 난류유동시 저항감소에 관한 연구 (A Study on the Drag Reduction of Shear Thinning Fluid with Vertical upward Turbulent Flow)

  • 차경옥;김봉각;김재근
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1647-1656
    • /
    • 1998
  • The drag reduction is the phenomenon that occurs only when the shear stress from the wall of pipe is beyond the critical point. The drag reduction increase as the molecular weight, concentration of the polymer and Reynolds number increase, but it is limited by Virk's maximum drag reduction asymptote. Because of the strong shear force for the polymer on the turbulent flow, the molecular weight and the drag reduction do not decrease. Such mechanical degradation of the polymer occurs in all polymer solvent systems. This paper is to identify and develop high performance polymer additives for fluid transportations with the benefits of turbulent drag reduction. In addition, drag reduction in vertical flow by measuring the pressure drop and local void fraction on vertical-up flow of close system is evaluated.