• 제목/요약/키워드: maximum power transfer

검색결과 320건 처리시간 0.025초

부하토크외란관측기를 이용한 1C-4M 축소형 철도차량장치의 점착력 추정에 의한 Anti-Slip 제어 (Anti-Slip Control by Adhesion Effort Estimation of 1C-4 Minimized Railway Vehicle using Load Torque Disturbance Observer)

  • 전기영;조정민;이승환;오봉환;이훈구;김용주;한경희
    • 전력전자학회논문지
    • /
    • 제8권4호
    • /
    • pp.366-374
    • /
    • 2003
  • 본 논문에서는 최대 견인력 제어를 위해서 부하 토크 외란 관측기를 이용하여 점착력 계수를 추정하고 추정한 점착력 계수의 미분치를 PI 토크 제어하는 Anti-slip 제어를 제안한다. 부하 토크 외란 관측기는 회전자의 위치 정보와 토크 전류의 정보를 이용하여 부하 외란 토크를 추정하고, 부하 외란 토크에 철도차량 상수를 미용하여 점착력 계수를 추정한다. 또한 부하토크외란 관측기는 구조가 간단하며, 시스템의 외란 및 각종 제어이득. 시스템의 상수 변화에 대해서도 견실한 견인력 제어 특성을 가지고 있다. 이와 같은 제어 알고리즘을 구현하기 위하여 IC4M(1-Controller 4-Motor) 축소형 철도차량시스템을 이용하여 제안된 알고리즘을 시뮬레이션과 실험을 통하여 확인하였다. 또한 실제 철도차량시스템의 경우 선로 표면의 상태 변화 및 차량속도의 가감에 따른 공전속도에 대한 점착력의 관계를 축소형 철도차량시스템으로 구현하여, 실제 철도차랑시스템의 경우와 비교 분석하여 최대 견인력제어가 되도록 하였다.

Investigation of 0.5 MJ superconducting energy storage system by acoustic emission method.

  • Miklyaev, S.M.;Shevchenko, S.A.;Surin, M.I.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.961-965
    • /
    • 1998
  • The rapid development of small-scale (1-10 MJ) Superconducting Magnetic Energy Storage Systems (SMES) can be explained by real perspective of practical implementation of these devices in electro power nets. However the serious problem of all high mechanically stressed superconducting coils-problem of training and degradation (decreasing) of operating current still exists. Moreover for SMES systems this problems is more dangerous because of pulsed origin of mechanical stresses-one of the major sources of local heat disturbances in superconducting coils. We investigated acoustic emission (AE) phenomenon on model and 0.5 MJ SMES coils taking into account close correlation of AE and local heat disturbances. Two-coils 0.5 MJ SMES system was developed, manufactured and tested at Russian Research Center in the frames of cooperation with Korean Electrical Engineering Company (KEPCO) [1]. The two-coil SMES operates with the stored energy transmitted between coils in the course of a single cycle with 2 seconds energy transfer time. Maximum operating current 1.55 kA corresponds to 0.5 MF in each coil. The Nb-Ti-based conductor was designed and used for SMES manufacturing. It represents transposed cable made of Nb-Ti strands in copper matrix, several cooper strands and several stainless steel strands. The coils are wound onto fiberglass cylindrical bobbins. To make AE event information more useful a real time instrumentation system was used. Two main measured and computer processed AE parameters were considered: the energy of AE events (E) and the accumulated energy of AE events (E ). Influence of current value in 0.5 MJ coils on E and E was studied. The sensors were installed onto the bobbin and the external surface of magnets. Three levels of initial current were examined: 600A, 1000A, 2450 A. An extraordinary strong dependence of the current level on E and E was observed. The specific features of AE from model coils, operated in sinusoidal vibration current changing mode were investigated. Three current frequency modes were examined: 0.012 Hz, 0.03 Hz and 0.12 Hz. In all modes maximum amplitude 1200 A was realized.

  • PDF

DC 나노그리드에서 Droop제어를 적용한 80kW급 양방향 하이브리드-SiC 부스트-벅 컨버터 개발 (Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid)

  • 김연우;권민호;박성열;김민국;양대기;최세완;오성진
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.360-368
    • /
    • 2017
  • This paper proposes the 80-kW high-efficiency bidirectional hybrid SiC boost/buck converter using droop control for DC nano-grid. The proposed converter consists of four 20-kW modules to achieve fault tolerance, ease of thermal management, and reduced component stress. Each module is constructed as a cascaded structure of the two basic bi-directional converters, namely, interleaved boost and buck converters. A six-pack hybrid SiC intelligent power module (IPM) suitable for the proposed cascaded structure is adopted for high-efficiency and compactness. The proposed converter with hybrid switching method reduces the switching loss by minimizing switching of insulated gate bipolar transistor (IGBT). Each module control achieves smooth transfer from buck to boost operation and vice versa, since current controller switchover is not necessary. Furthermore, the proposed parallel control using DC droop with secondary control, enhances the current sharing accuracy while well regulating the DC bus voltage. A 20-kW prototype of the proposed converter has been developed and verified with experiments and indicates a 99.3% maximum efficiency and 98.8% rated efficiency.

Depiction of Acute Stroke Using 3-Tesla Clinical Amide Proton Transfer Imaging: Saturation Time Optimization Using an in vivo Rat Stroke Model, and a Preliminary Study in Human

  • Park, Ji Eun;Kim, Ho Sung;Jung, Seung Chai;Keupp, Jochen;Jeong, Ha-Kyu;Kim, Sang Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권2호
    • /
    • pp.65-70
    • /
    • 2017
  • Purpose: To optimize the saturation time and maximizing the pH-weighted difference between the normal and ischemic brain regions, on 3-tesla amide proton transfer (APT) imaging using an in vivo rat model. Materials and Methods: Three male Wistar rats underwent middle cerebral artery occlusion, and were examined in a 3-tesla magnetic resonance imaging (MRI) scanner. APT imaging acquisition was performed with 3-dimensional turbo spin-echo imaging, using a 32-channel head coil and 2-channel parallel radiofrequency transmission. An off-resonance radiofrequency pulse was applied with a Sinc-Gauss pulse at a $B_{1,rms}$ amplitude of $1.2{\mu}T$ using a 2-channel parallel transmission. Saturation times of 3, 4, or 5 s were tested. The APT effect was quantified using the magnetization-transfer-ratio asymmetry at 3.5 ppm with respect to the water resonance (APT-weighted signal), and compared with the normal and ischemic regions. The result was then applied to an acute stroke patient to evaluate feasibility. Results: Visual detection of ischemic regions was achieved with the 3-, 4-, and 5-s protocols. Among the different saturation times at $1.2{\mu}T$ power, 4 s showed the maximum difference between the ischemic and normal regions (-0.95%, P = 0.029). The APTw signal difference for 3 and 5 s was -0.9% and -0.7%, respectively. The 4-s saturation time protocol also successfully depicted the pH-weighted differences in an acute stroke patient. Conclusion: For 3-tesla turbo spin-echo APT imaging, the maximal pH-weighted difference achieved when using the $1.2{\mu}T$ power, was with the 4 s saturation time. This protocol will be helpful to depict pH-weighted difference in stroke patients in clinical settings.

사용후핵연료 건식 용기의 단기운영공정 열전달 평가 (ANALYSIS OF HEAT TRANSFER ON SPENT FUEL DRY CASK DURING SHORT-TERM OPERATIONS)

  • 김형진;이동규;강경욱;조천형;권오준
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.54-61
    • /
    • 2016
  • When spent fuel assemblies from the reactor of nuclear power plants(NPPs) are transported, the assemblies are exposed to short-term operations that can affect the peak cladding temperature of spent fuel assemblies. Therefore, it needs to perform the analysis of heat transfer on spent fuel dry cask during the operation. For 3 dimensional computational fluid dynamnics(CFD) simulation, it is proposed that the short-term operation is divided into three processes: Wet, dry, and vacuum drying condition. The three processes have different heat transfer mode and medium. Metal transportation cask, which is Korea Radioactive Waste Agency(KORAD)'s developing cask, is evaluated by the methods proposed in this work. During working hours, the boiling at wet process does not occur in the cask and the peak cladding temperatures of all processes remain below $400^{\circ}C$. The maximum peak cladding temperature is $173.8^{\circ}C$ at vacuum drying process and the temperature rise of dry, and vacuum drying process occurs steeply.

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • 시스템엔지니어링학술지
    • /
    • 제13권1호
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.

무선전력전송 송수신코일 거리에 따른 효율 및 임피던스 특성 해석 (Characteristic Analysis of Efficiency and Impedance With WPT Transmitter and Receiver Coil Distance)

  • 박대길;김영현;구경헌
    • 한국항행학회논문지
    • /
    • 제26권3호
    • /
    • pp.160-165
    • /
    • 2022
  • 본 논문에서는 드론 무선충전을 위해 지상 고정 무선전력전송 송신기에 착륙하는 드론과 같이, 고정 송신기와 상대적인 거리 및 코일 정렬이 변화하는 수신기에 적용하는 6.78 MHz 자기공진 무선전력전송 기술을 제안하였다. 송신 및 수신 코일간 상대 거리와 코일 면적 부정렬비 등에 따른 전력전달 특성을 연구하였다. 송수신 코일은 직접 급전방식으로 60×80mm2 크기로 설계하고 상대거리 최대 50mm에서 수평 방향 면적 부정렬 상태를 가정하여 코일 중심축이 XY평면에서 각각 0-40mm 어긋날 때 특성을 유도하였다. 송수신 코일간 거리 및 면적 부정렬비에 따라 3차원 전자계 시뮬레이션을 통한 전력전송특성을 유도하고 제작한 시스템 특성을 시뮬레이션과 비교하였다. 무선전력전송 송수신 코일간 시뮬레이션 특성과 측정치는 수직거리 최대 30mm, 50% 면적 부정렬 상태에서-3dB 이상의 전달특성을 나타내었다. 본 연구를 통해 송수신기간의 상대거리 및 부정렬 상황에 따라 직접 급전 방식에 따른 특성을 예측할 수 있었으며 직접 급전 방식은 송수신 코일간 상대적 거리가 짧고 부정렬 면적비가 작아 결합계수가 큰 경우 유리함을 알수 있었다.

가축 사료 중 방사성 물질 허용 기준 설정에 관한 연구 (Studies on the Establishment of Tolerance Level of Radioactive Compounds in Livestock Feeds)

  • 이완로;지상윤;김진규;이윤종;박준철;문홍길;이주운
    • 방사선산업학회지
    • /
    • 제5권4호
    • /
    • pp.337-345
    • /
    • 2011
  • In order to provide an effective preparedness for a nuclear or radiological emergency happening in the domestic or neighborhood countries and to solve the vague fear of the people for the ingestion of radioactive livestock products, the establishment of national guideline level for radionuclides in feed is urgently necessary. This is because it is important to secure the safety and to manage the crisis in the agricultural, fishery and food sector by performing the effective safety control during and after nuclear incident. This study was performed to investigate the report cases of international organizations and foreign countries to set up a domestic control standard for managing radioactive substances that may be contaminated in animal feeds due to the nuclear power plant incident. In addition, an attempt was made to provide a useful reference that can help prepare a domestic control standard, using a coefficient that can consider the transfer into livestock through the intake of radioactive contaminated animal feeds. The standard radioisotopes investigated were confined to radioactive cesium ($^{137+134}Cs$) and iodine ($^{131}I$). Guideline level for the radionuclides was calculated by using the transfer coefficient factor and the maximum daily intake of animal feed provided by IAEA. For example, the maximum daily intake of animal feed was set as $25kg\;d^{-1}$ for dairy cows, $10kg\;d^{-1}$ for beef cattle, $3.0kg\;d^{-1}$ for pigs and $0.15kg\;d^{-1}$ for chickens. The result values for radioactive cesium were calculated as $8,696Bq\;kg^{-1}$, $4,545Bq\;kg^{-1}$, $1,667Bq\;kg^{-1}$ and $2,469Bq\;kg^{-1}$, respectively. The results for radioactive iodine showed the ranges between $741Bq\;kg^{-1}$ and $76,628Bq\;kg^{-1}$. These data can be utilized as a scientific reference for the preparation of a crisis management manual for the emergency control due to nuclear power plant accident in Korea and neighboring country. These results will contribute to establish the safe feed management system at national level as manual for responding the radioactive exposure of agricultural products and animal feeds, which are currently not established.

3 kW 무선 전력전송을 위한 전력 변환기 회로 특성 (The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission)

  • 황락훈;나승권;김진선;강진희
    • 한국항행학회논문지
    • /
    • 제24권6호
    • /
    • pp.566-572
    • /
    • 2020
  • 무선 전력전송기에서 두 유도 코일 사이의 무선 전력전송 특성과 영향에 대해서 알아보고, 무선 전력전송 기술을 이용한 전력변환기 회로와 배터리 충·방전기 회로를 제안한다. 무선 전력전송기 및 무선 충전기의 장점은 기존의 플러그인 탑재형 유선 충전기(OBC; on-board charger) 대신 무선으로 전력을 전송하여 배터리에 전력 충전 시 사용자가 외부에서 전원을 연결 시키지 않고 무선으로 충전할 수 있는 점이다. 또한 무선충전의 이점은 2차 측 정류기의 회로와 수신 코일을 사용하여 에너지 효율 향상 효과를 가져올 수 있으나, 대용량의 원거리 무선충전 방식은 전송거리에 대한 한계가 있어 현재 많은 연구가 진행되고 있다. 비 접촉 방식의 전력 전송기의 전력을 전송 할 수 있는 송신부 인 1차측 코일과 수신부인 2차측 코일 및 하프브리지(half bridge) 직렬공진 컨버터를 적용한 무선 전력전송장치의 송신부 회로와 수신부 회로의 연구를 목적으로 무선충전시스템의 전력전송거리 향상을 위한 새로운 토폴로지를 적용하고, 각각의 거리에 따른 실험을 통해 8 cm 전송거리에서 출력 3 kW 일 때, 최대 효율(95.8%)을 확인 할 수 있었다.

미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산 (Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell)

  • 이유진;오유관;김미선
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).