• 제목/요약/키워드: maximum power transfer

검색결과 320건 처리시간 0.023초

New Analysis Method for Wireless Power Transfer System with Multiple n Resonators

  • Kim, Ju-Hui;Park, Byung-Chul;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • 제13권3호
    • /
    • pp.173-177
    • /
    • 2013
  • This paper presents a new method for analyzing the maximum efficiency of a wireless power transfer (WPT) system with multiple n resonators. The method is based on ABCD matrices and allows transformation of the WPT system with multiple n resonators into a single two-port network system. The general maximum efficiency equation of a WPT system with multiple n resonators is derived using the ABCD matrix. Use of this equation allows placement of the relay resonators for maximum efficiency even though they are asymmetrical. The general maximum efficiency equation and the method of the optimum placement are verified by a full wave simulation. The results show that the method is useful for the analysis of a WPT system with relay resonators.

Analysis of Key Parameters for Inductively Coupled Power Transfer Systems Realized by Detuning Factor in Synchronous Generators

  • Liu, Jinfeng;Li, Kun;Jin, Ningzhi;Iu, Herbert Ho-Ching
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1087-1098
    • /
    • 2019
  • In this paper, a detuning factor (DeFac) method is proposed to design the key parameters for optimizing the transfer power and efficiency of an Inductively Coupled Power Transfer (ICPT) system with primary-secondary side compensation. Depending on the robustness of the system, the DeFac method can guarantee the stability of the transfer power and efficiency of an ICPT system within a certain range of resistive-capacitive or resistive-inductive loads. A MATLAB-Simulink model of a ICPT system was built to assess the system's main evaluation criteria, namely its maximum power ratio (PR) and efficiency, in terms of different approaches. In addition, a magnetic field simulation model was built using Ansoft to specify the leakage flux and current density. Simulation results show that both the maximum PR and efficiency of the ICPT system can reach almost 70% despite the severe detuning imposed by the DeFac method. The system also exhibited low levels of leakage flux and a high current density. Experimental results confirmed the validity and feasibility of an ICPT system using DeFac-designed parameters.

자기공진방식의 무선전력전송 시스템에서 공진 중계기 적용 여부에 따른 전력전송 효율 분석 (Analysis of the Efficiency According to Resonant Repeater Application in Magnetic Resonant Wireless Power Transfer System)

  • 백승명;김동은;손진근
    • 전기학회논문지P
    • /
    • 제67권4호
    • /
    • pp.221-226
    • /
    • 2018
  • In this paper, the power transfer efficiency analysis based on the resonant repeater in a magnetic resonance wireless power transfer system is proposed. The efficiency of the magnetic resonance method was verified by comparing the general frequency with the resonance frequency. The resonance repeater was arranged to increase the efficiency and increase the transfer distance. When using resonant repeaters, the maximum efficiency increase is about 36.23[%] and the transfer distance was extended to more than 20[cm]. Through this study, confirmed the effect of using resonance repeaters in wireless power transfer system. As a result, it can be expected that the overall technology related to wireless power transfer system will be more valuable for energy-IT technology.

계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석 (Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System)

  • 노경수;류행수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

Power Transmission Determined by the Mutual Impedance and the Transducer Power Gain in the Near Field Region

  • Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.152-155
    • /
    • 2011
  • This paper describes the role of mutual impedance and the transducer power gain which comes from key parameters to determine the amount of wireless power especially in a near-field environment. These two key parameters are applied to the two configurations; one is a dipole-dipole, and the other is a dipole-metal plate-loop configuration. Discussions are given on the achievable maximum power transfer between the sender and the receiver affected by the matching and the pass blockage.

가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계 (A Fuzzy Logic Controller Design for Maximum Power Extraction of Variable Speed Wind Energy Conversion System)

  • 김재곤;허욱열;김병륜
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권11호
    • /
    • pp.753-759
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

열전달을 고려한 열기관의 최대출력 설계조건 (Maximum power design conditions of heat engine with heat transfer processes)

  • 김수연;정평석
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.734-738
    • /
    • 1989
  • 본 연구에서는 한 걸음 더 나아가 작동유체의 온도 뿐만 아니라 열기기의 규모를 결정하는 열교환기의 용량도 변수로 하여 출력과 효율의 변화를 조사하고, 최대출력을 얻기 위한 운전 조건 뿐만 아니라 설계조건에 대해서도 살펴 보았다.

Study on Two-Coil and Four-Coil Wireless Power Transfer Systems Using Z-Parameter Approach

  • Seo, Dong-Wook;Lee, Jae-Ho;Lee, Hyung Soo
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.568-578
    • /
    • 2016
  • A wireless power transfer (WPT) system is usually classified as being of either a two-coil or four-coil type. It is known that two-coil WPT systems are suitable for short-range transmissions, whereas four-coil WPT systems are suitable for mid-range transmissions. However, this paper reveals that the two aforementioned types of WPT system are alike in terms of their performance and characteristics, differing only when it comes to their matching-network configurations. In this paper, we first find the optimum load and source conditions using Z-parameters. Then, we estimate the maximum power transfer efficiency under the optimum load and source conditions, and we describe how to configure the matching networks pertaining to both types of WPT system for the given optimum load and source conditions. The two types of WPT system show the same performance with respect to the coupling coefficient and load impedance. Further, they also demonstrate an identical performance in the two cases considered in this paper, that is, a strong-coupled case and a weak-coupled case.

Evaluation of AC Resistance in Litz Wire Planar Spiral Coils for Wireless Power Transfer

  • Wang, Xiaona;Sun, Pan;Deng, Qijun;Wang, Wengbin
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1268-1277
    • /
    • 2018
  • A relatively high operating frequency is required for efficient wireless power transfer (WPT). However, the alternating current (AC) resistance of coils increases sharply with operating frequency, which possibly degrades overall efficiency. Hence, the evaluation of coil AC resistance is critical in selecting operating frequency to achieve good efficiency. For a Litz wire coil, AC resistance is attributed to the magnetic field, which leads to the skin effect, the proximity effect, and the corresponding conductive resistance and inductive resistance in the coil. A numerical calculation method based on the Biot-Savart law is proposed to calculate magnetic field strength over strands in Litz wire planar spiral coils to evaluate their AC resistance. An optimized frequency can be found to achieve the maximum efficiency of a WPT system based on the predicted resistance. Sample coils are manufactured to verify the resistance analysis method. A prototype WPT system is set up to conduct the experiments. The experiments show that the proposed method can accurately predict the AC resistance of Litz wire planar spiral coils and the optimized operating frequency for maximum efficiency.

태양광/풍력 복합발전 시스템의 최대출력제어기 설계 (A hybrid maximum power tracker for a photovoltaic/wind hybrid power system)

  • 정상식;김시경;정영석;유권종;송진수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.134-137
    • /
    • 1998
  • In this paper, a hybrid maximum power tracker for a photovoltaic/wind hybrid power system is proposed. In the hybrid system, a direct interfacing the wind power system to the photovoltaic system gives the problems of voltage fluctuations, poor maximum power tracking, and harmonics generation associated with the random wind speed, the random solar irradiation and the pulsating torque came from the wind turbine synchronous generator and photovoltaic. To overcome these problems, a wind side DC/DC converter are proposed employing a star/delta transformer interconnected between the wind turbine side and the photovoltaic side. The control objective for each dc/dc converter is to extract maximum power from each different photovoltaic system and wind system, and transfer two different powers to the inverter and load.

  • PDF