• Title/Summary/Keyword: maximum power tracking (MPPT)

Search Result 386, Processing Time 0.035 seconds

Adaptive maximum power point tracking control of wind turbine system based on wind speed estimation

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.460-475
    • /
    • 2018
  • In the variable-speed wind energy system, to achieve maximum power point tracking (MPPT), the wind turbine should run close to its optimal angular speed according to the wind speed. Non-linear control methods that consider the dynamic behavior of wind speed are generally used to provide maximum power and improved efficiency. In this perspective, the mechanical power is estimated using Kalman filter. And then, from the estimated mechanical power, the wind speed is estimated with Newton-Raphson method to achieve maximum power without anemometer. However, the blade shape and air density get changed with time and the generator efficiency is also degraded. This results in incorrect estimation of wind speed and MPPT. It causes not only the power loss but also incorrect wind resource assessment of site. In this paper, the adaptive maximum power point tracking control algorithm for wind turbine system based on the estimation of wind speed is proposed. The proposed method applies correction factor to wind turbine system to have accurate wind speed estimation for exact MPPT. The proposed method is validated with numerical simulations and the results show an improved performance.

Maximum Power Point Tracking using Double Fuzzy Logic Controller for Grid-connected Photovoltaic System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 MPPT제어를 위한 Double Fuzzy 제어기 설계에 관한 연구)

  • Kim, Kyu-Han;Kim, Hyung-Su;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.471-478
    • /
    • 2011
  • This paper proposes a method of maximum power point tracking (MPPT) using fuzzy logic control for grid-connected photovoltaic systems (PV). First, for the purpose of comparison, because of its proven and good performances, the incremental conductance (IncCond) technique is briefly introduced. A double fuzzy logic controller (DFLC) based MPPT is then proposed which has shown better performances compared to the IncCond MPPT based approach. Modeling and Simulation in grid-connected PV system results are provided for both controllers under same atmospheric condition based PSCAD/EMTDC. The double fuzzy logic MPPT controller is then simulated and evaluated, which has shown better performances.

A study of Improved P&O MPPT Algorithm go with a Dynamic characteristic of Photovoltaic System (태양광 시스템의 동작특성에 따른 개선된 P&O MPPT 알고리즘 연구)

  • Lee, Seung-Hee;Jang, Ki-Young;Kim, Sang-Mo;Kim, Ki-Hyun;Yu, Gwon-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.107-110
    • /
    • 2009
  • The photovoltaic power system is effected by atmospheric condition. Therefore, The maximum power point tracking(MPPT) algorithm of the Photovoltaic (PV) power system is needed for high efficiency. Many MPPT techniques have been considered in past, but In this paper, the author analyzes widely known P&O MPPT algorithm and ImP&O algorithm, and presents new MPPT algorithm complementing weaknesses of other two algorithms.

  • PDF

Analysis and study for MPPT algorithms in transformerless PV PCS (변압기 없는 태양광 PCS에서의 최대전력추종제어기법 분석)

  • Lee Kyung-Soo;Jung Young-Seck;So Jung-Hoon;Yu Gwon-Jong;Choi Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.606-609
    • /
    • 2004
  • Maximum power point tracking(MPPT) is usually used for a solar power system. Many maximum power tracking techniques have been considered in the past. The microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different solar arrays. In this paper, four MPPT algorithms are analyzed and studied. Perturbation and Observation(P&O), Incremental Conductance(IncCond), which are used from the past. Improved P&O and Two-mode , which are developed P&O and IncCond algorithms. Also, the author introduces grid-connected fransformerless PV PCS to apply MPPT control. MPPT efficiency is measured by changing irradiance from $0.1kW/m^2\;to\;1kW/m^2$ and simulation was performed for each MPPT algorithm.

  • PDF

Comparison of MPPT Control Method Characteristic for Stand-alone PV System (독립형 태양광 발전시스템의 MPPT 제어기법 특성비교)

  • Lee, Yong-Sik;Kim, Nam-In;Jeong, Sung-Won;Gim, Jae-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.75-79
    • /
    • 2012
  • Maximum power point tracking(MPPT) techniques are used in photovoltaic systems to maximize the PV array output power by tracking continuously the maximum power point which depends on panels temperature and on irradiance conditions. This paper proposes a variable step size MPPT algorithm which can improve the MPPT speed and accuracy. Depending on insolation and temperature, the MPPT controller gives optimized step size. The effectiveness of the proposed system is verified thorough PSIM simulation and experiments on a 50[W] prototype. The experimental results confirm that the PV power of the improved P&O method is higher than that of the traditional P&O method.

Comparative characteristics of the PV system according to the MPPT control Method (MPPT 제어기법에 따른 PV 시스템의 특성 비교)

  • Seo, Tae-Young;Ko, Jae-Sub;Kang, Sung-Min;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.956-957
    • /
    • 2015
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

  • PDF

Improving the performance of PV system using the N-IC MPPT methods (N-IC MPPT방법을 이용한 태양광 발전시스템의 성능개선)

  • Seo, Tae-Young;Ko, Jae-Sub;Kang, Sung-Min;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.958-959
    • /
    • 2015
  • This paper proposes adaptive incremental conductance(A-IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. Conventional Perturbation & Observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, this paper proposes N-IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve tracking speed and accuracy, when operating point is far from maximum power point(MPP), step size uses maximum value and when operating point is near from MPP, step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional IC MPPT algorithm.

  • PDF

Sensor-less Approaches for Maximum Photovoltaic Power Tracking Control

  • Matsui Mikihiko;Kitano Tatsuya
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.626-630
    • /
    • 2001
  • MPPT (maximum power point tracking) control is very important for the practical PV (photovoltaic) systems to maintain efficient power generating conditions irrespective of the deviation in the PV array insolation or/and temperature conditions. Although a plenty of researches have been done so far, most of them are too costly because of being too dependant on expensive sensors for measuring photovoltaic power and micro-processors for achieving elaborate and complicated control strategies. From this point of view, authors have been researching on sensor-less approaches for MPPT control, and have proposed two types of new control schemes 'Power Equilibrium Scheme' and 'Limit Cycle Scheme'. This paper summarises these two schemes with focussing on their :- operating principles and some results of simulation and experiments.

  • PDF

Scaling Factor Design Based Variable Step Size Incremental Resistance Maximum Power Point Tracking for PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2012
  • Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations, and experimentally using a fixed point digital signal processor (TMS320F2808).

An Improved Variable Step Size MPPT Algorithm Based on INC

  • Xu, Zhi-Rong;Yang, Ping;Zhou, Dong-Bao;Li, Peng;Lei, Jin-Yong;Chen, Yuan-Rui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.487-496
    • /
    • 2015
  • In order to ensure that photovoltaic (PV) systems work at the maximum power point (MPP) and maximize the economic benefits, maximum power point tracking (MPPT) techniques are normally applied to these systems. One of the most widely applied MPPT methods is the incremental conductance (INC) method. However, the choice of the step size still remains controversial. This paper presents an improved variable step size INC MPPT algorithm that uses four different step sizes. This method has the advantages of INC but with the ability to validly adjust the step size to adapt to changes of the PV's power curve. The presented algorithm also simultaneously achieves increased rapidity and accuracy when compared with the conventional fixed step size INC MPPT algorithm. In addition, the theoretical derivation and specific applications of the proposed algorithm are presented here. This method is validated by simulation and experimental results.