• 제목/요약/키워드: maximum nonlinear displacement

검색결과 176건 처리시간 0.02초

FE model updating and seismic performance evaluation of a historical masonry clock tower

  • Gunaydin, Murat;Erturk, Esin;Genc, Ali Fuat;Okur, Fatih Yesevi;Altunisik, Ahmet Can;Tavsan, Cengiz
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.65-82
    • /
    • 2022
  • This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods

  • Rezaiee-Pajand, M.;Ghalishooyan, M.;Salehi-Ahmadabad, M.
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.879-914
    • /
    • 2013
  • In part I of the article, formulation and characteristics of the several well-known structural geometrical nonlinear solution techniques were studied. In the present paper, the efficiencies and capabilities of residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control and modified normal flow will be evaluated. To achieve this goal, a comprehensive comparison of these solution methods will be performed. Due to limit page of the article, only the findings of 17 numerical problems, including 2-D and 3-D trusses, 2-D and 3-D frames, and shells, will be presented. Performance of the solution strategies will be considered by doing more than 12500 nonlinear analyses, and conclusions will be drawn based on the outcomes. Most of the mentioned structures have complex nonlinear behavior, including load limit and snap-back points. In this investigation, criteria like number of diverged and complete analyses, the ability of passing load limit and snap-back points, the total number of steps and analysis iterations, the analysis running time and divergence points will be examined. Numerical properties of each problem, like, maximum allowed iteration, divergence tolerance, maximum and minimum size of the load factor, load increment changes and the target point will be selected in such a way that comparison result to be highly reliable. Following this, capabilities and deficiencies of each solution technique will be surveyed in comparison with the other ones, and superior solution schemes will be introduced.

Seismic response of concrete columns with nanofiber reinforced polymer layer

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.361-368
    • /
    • 2017
  • Seismic response of the concrete column covered by nanofiber reinforced polymer (NFRP) layer is investigated. The concrete column is studied in this paper. The column is modeled using sinusoidal shear deformation beam theory (SSDT). Mori-Tanaka model is used for obtaining the effective material properties of the NFRP layer considering agglomeration effects. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized to obtain the dynamic response of the structure. The effects of different parameters such as NFRP layer, geometrical parameters of column, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure are shown. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure. In addition, using nanofibersas reinforcement leads a reduction in the maximum dynamic displacement of the structure.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

지반-기초 영향을 고려한 교통신호등주의 지진응답 분석 (Seismic Response Investigation of Traffic Signal-Supporting Structures Including Soil-Foundation Effects)

  • 김태현;전종수;노화성
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.237-244
    • /
    • 2023
  • This study analyzes the seismic response of traffic light poles, considering soil-foundation effects through nonlinear static and time history analyses. Two poles are investigated, uni-directional and bi-directional, each with 9 m mast arms. Finite element models incorporate the poles, soil, and concrete foundations for analysis. Results show that the initial stiffness of the traffic light poles decreases by approximately 38% due to soil effects, and the drift ratio at which their nonlinear behavior occurs is 77% of scenarios without considering soil effects. The maximum acceleration response increases by about 82% for uni-directional poles and 73% for bi-directional poles, while displacement response increases by approximately 10% for uni-directional and 16% for bi-directional poles when considering soil-foundation effects. Additionally, increasing ground motion intensity reduces soil restraints, making significant rotational displacement the dominant response mechanism over flexural displacement for the traffic light poles. These findings underscore the importance of considering soil-foundation interactions in analyzing the seismic behavior of traffic light poles and provide valuable insights to enhance their seismic resilience and safety.

전단벽구조체에 대한 변위기반 내진성능법의 평가 (Evaluation of Displacement-based Approaches for a Shear Wall Structure)

  • 최상현;현창헌;최강룡;김문수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.465-472
    • /
    • 2003
  • In this paper, the displacement-based seismic design approaches are evaluated utilizing shaking-table test data of a 1:3 scaled reinforced concrete (RC) bearing wall structure Provided by IAEA. The maximum responses of the structure are estimated using the two prominent displacement-based approaches, i.e., the capacity spectrum method and the displacement coefficient method, and compared with the measured responses. For comparison purpose, linear and nonlinear time history analyses and response spectrum analysis are also performed. The results indicate that the capacity spectrum method underestimates the response of the structure In inelastic range while the displacement coefficient method yields reasonable values in general.

  • PDF

Evaluation of performance of eccentric braced frame with friction damper

  • Vaseghi Amiri, J.;Navayinia, B.;Navaei, S.
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.717-732
    • /
    • 2011
  • Nonlinear dynamic analysis and evaluation of eccentric braced steel frames (EBF) equipped with friction damper (FD) is studied in this research. Previous studies about assessment of seismic performance of steel braced frame with FD have been generally limited to installing this device in confluence of cross in concentrically braced frame such chevron and x-bracing. Investigation is carried out with three types of steel frames namely 5, 10 and 15 storeys, representing the short, medium and high structures respectively in series of nonlinear dynamic analysis and 10 slip force values subjected to three different earthquake records. The proper place of FD, rather than providing them at all level is also studied in 15 storey frame. Four dimensionless indices namely roof displacement, base shear, dissipated energy and relative performance index (RPI) are determined in about 100 nonlinear dynamic analyses. Then average values of maximum roof displacement, base shear, energy dissipated and storey drift under three records for both EBF and EBF equipped with friction damper are obtained. The result indicates that FD reduces the response compared to EBF and is more efficient than EBF for taller storey frames.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • 제47권4호
    • /
    • pp.251-262
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Methods: Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were $30^{\circ}$ distally inclined to the axial implants. Vertical and mesiodistal oblique ($45^{\circ}$ angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. Results: The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Conclusions: Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.

비탄성변위비를 이용한 능력 스펙트럼법 (Capacity Spectrum Method Based on Inelastic Displacement Ratio)

  • 한상환;배문수
    • 한국지진공학회논문집
    • /
    • 제12권2호
    • /
    • pp.69-80
    • /
    • 2008
  • 본 연구에서는 중고층 건물과 같이 고차모드의 영향이 커지는 구조물의 지진에 대한 성능점을 간략하고 정확하게 구할 수 있는 개선된 능력스펙트럼법을 제안한다. 능력스펙트럼법은 주어진 지진의 응답스펙트럼과 다자유도 구조물을 변환한 등가 단자유도 시스템을 이용하여 지진으로 인하여 발생하는 지붕층의 최대 비탄성변위를 간략하게 구하는 방법이다. 제안된 방법에서는 구조물의 탄성 및 비탄성 동적해석을 수행하지 않고, 기존의 능력스펙트럼법에서 요구되는 정적푸쉬오버해석과 탄성변위를 이용하여 비탄성변위를 예측하는데, 기존 연구에서 개발한 $C_R$을 이용한다. 본 연구는 제안한 방법의 정확도를 평가하기 위해 LA 지역의 3, 9, 20층 철골모멘트저항골조를 선택한다. 이 건물들의 지진에 대한 각 층별 최대 층간변위비를 개발한 CSM으로 구하고, 이를 비선형 응답이력해석(NL-RHA)으로 구한 결과와 비교하였다. 사용한 지진은 재현주기 475년과 2475년의 위험수준에 대한 각각 20개의 지진집단들이다. 또한 본 연구에서는 ATC-40에 제시된 CSM 방법과 N2 방법으로 구한 각 건물의 최대 층간변위비도 비교한다. 개발된 CSM은 기존에 개발된 방법에 비하여 보다 정확한 최대 층간변위비를 예측하는 것으로 나타났다.