• Title/Summary/Keyword: maximum moment

Search Result 908, Processing Time 0.029 seconds

Lateral Resisting Capacity for CFT Column to RC Flat Plate Slab Exterior Connections (CFT 기둥-RC 무량판 슬래브 외부접합부의 횡저항 성능)

  • Song, Ho-Beom;Song, Jin-Kyu;Oh, Sang-Won;Kim, Byung-Jo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.61-64
    • /
    • 2008
  • A combination of CFT column and RC flat plate without formworks is very effectively rapid constructions. This paper verified the lateral resisting capacity of CFT column-RC flat plate exterior connection in comparison with general RC column-flat plate connection and detected moment capacity and ductility capacity of connection according to moment-displacement ratio. We made and tested specimens which have different variables respectively and as a result derive a following conclusion. In CFT-E2 specimen a critical section was extended and maximum moment increased 20% respectively in comparison to general RC column specimen. In BME and CFT-E1 specimens generally shear governed behaviors and CFT-E2 specimen complemented with seismic band, flexure behavior region of slab was extended and also ductility ratio and energy absorptance increased.

  • PDF

Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section

  • Zareia, Ali;Vaghefi, Mohammad;Fiouz, Ali R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.507-528
    • /
    • 2016
  • Reduced beam section (RBS) moment resisting connections are among the most economical and practical rigid steel connections developed in the aftermath of the 1994 Northridge and the 1995 Kobe earthquakes. Although the performance of RBS connection has been widely studied, this connection has not been subject to in the skewed conditions. In this study, the seismic performance of dogbone connection was investigated at different angles. The Commercial ABAQUS software was used to simulate the samples. The numerical results are first compared with experimental results to verify the accuracy. Nonlinear static analysis with von Mises yield criterion materials and the finite elements method were used to analyze the behavior of the samples The selected Hardening Strain of materials at cyclic loading and monotonic loading were kinematics and isotropic respectively The results show that in addition to reverse twisting of columns, change in beam angle relative to the central axis of the column has little impact on hysteresis response of samples. Any increase in the angle, leads to increased non-elastic resistance. As for Weak panel zone, with increase of the angle between the beam and the column, the initial submission will take place at a later time and at a larger rotation angle in the panel zone and this represents reduced amount of perpendicular force exerted on the column flange. In balanced and strong panel zones, with increase in the angle between the beam and the central axis of the column, the reduced beam section (RBS), reaches the failure limit faster and at a lower rotation angle. In connection of skewed beam, balanced panel zone, due to its good performance in disposition of plasticity process away from connection points and high energy absorption, is the best choice for panel zone. The ratio of maximum moment developed on the column was found to be within 0.84 to 1 plastic anchor point, which shows prevention of brittle fracture in connections.

Effect of labiolingual inclination of a maxillary central incisor and surrounding alveolar bone loss on periodontal stress: A finite element analysis

  • Choi, Sung-Hwan;Kim, Young-Hoon;Lee, Kee-Joon;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.46 no.3
    • /
    • pp.155-162
    • /
    • 2016
  • Objective: The aim of this study was to investigate whether labial tooth inclination and alveolar bone loss affect the moment per unit of force ($M_t/F$) in controlled tipping and consequent stresses on the periodontal ligament (PDL). Methods: Three-dimensional models (n = 20) of maxillary central incisors were created with different labial inclinations ($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, and $20^{\circ}$) and different amounts of alveolar bone loss (0, 2, 4, and 6 mm). The $M_t/F$ necessary for controlled tipping ($M_t/F_{cont}$) and the principal stresses on the PDL were calculated for each model separately in a finite element analysis. Results: As labial inclination increased, $M_t/F_{cont}$ and the length of the moment arm decreased. In contrast, increased alveolar bone loss caused increases in $M_t/F_{cont}$ and the length of the moment arm. When $M_t/F$ was near $M_t/F_{cont}$, increases in Mt/F caused compressive stresses to move from a predominantly labial apical region to a palatal apical position, and tensile stresses in the labial area moved from a cervical position to a mid-root position. Although controlled tipping was applied to the incisors, increases in alveolar bone loss and labial tooth inclination caused increases in maximum compressive and tensile stresses at the root apices. Conclusions: Increases in alveolar bone loss and labial tooth inclination caused increases in stresses that might cause root resorption at the root apex, despite the application of controlled tipping to the incisors.

THE BALANCE OF OCCLUSAL CONTATS IN NORMAL OCCLUSION DURING INTERCUSPAL POSITION ON T-SCAN SYSTEM (T-Scan System을 이용한 성인 정상교합자의 교두감합위에서 교합안정에 관한 연구)

  • Pahng, Won-Dong;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.23-37
    • /
    • 1991
  • The understanding the natureof occlusal tooth contacts of natural dentition is important for correct diagnosis and treatment of diseases developed in stomatognatic system. Several investigator have studied the distribution of tooth contacts in maximum intercuspation and have reported contact locations with respect to the tooth position. Many methods have been clinically applied for the occlusal analysis in the intercuspal position. However, there are few quantative methods. This study analyzed the new software version of the T-Scan system to record and analyze occlusal contact balance in the anterior-posterior and right-left directions. Six time moment statistics and five moment statistics were calculated in the midsagittal and the incisal axes of the occlusal plane. In the present study, informed consent was obtained from 100 subjects with natural dentitions. The results were as follows ; 1. The mean of the dental arch length & width were 48.78, 65.32mm in whole population, 49.09mm, 65.50mm in males, 48.78mm, 64.63mm in females, respectively. 2. The mean of TLR & PLR were 0.193mm(left), 0.311mm(left), respectively. Therefore, the distribution of tooth contacts was bilaterally symmetric. 3. The mean of TFB & PFB were 29.168mm, 29.055mm, and that of LFB & RFB were 29.627mm, 29.587mm, respectively, and the qualitative center of occlusal contacts was the firtst molar. 4. The mean of LL & RL were 31.666mm, 31.377mm, respectively, and the quantitative center of occlusal force was the first molar. 5. The mean of LF & RF were 60.237N, 59.276N, respectively and Left-right moment was 72.491Nmm. Therfore, the distribution of occlusal force was bilaterally balanced.

  • PDF

Experimental and numerical study on performance of long-short combined retaining piles

  • Xu, Chang J.;Ding, Hai B.;Luo, Wen J.;Tong, Li H.;Chen, Qing S.;Deng, Jian L.
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.255-265
    • /
    • 2020
  • Laboratory tests are conducted to investigate the performance of retaining system with different combinations of long-short piles. Numerical analysis implemented using ABAQUS are verified by comparing numerical results with measured data. By performing numerical studies, the horizontal displacement of piles, heave of excavation bottom and bending moment of pile for various pile system with different pile lengths are investigated. Results show that long piles share higher bending moments than short piles. The increase in the number of short piles leads to a slight increase in the heave at excavation bottom for long-short pile retaining system. Retaining system with different long and short pile combinations have greater effects on the horizontal displacement of pile above the excavation bottom, compared to its counterparts below excavation bottom. For a given length of long pile, the bending moment and displacement of piles increase with the decrease in length of short piles, while the increasing rate of maximum moment of retaining pile system is insignificant. Results highlight that a reliable and economical pile retaining system can be designed by optimizing the number and length of short piles, provided that the working performance of retaining structures above excavation bottom meets the design requirement in practice.

Effect of Reinforcement for Web Opening on Shear Strength of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 전단 내력에 대한 개구부 보강 효과)

  • Lee, Jong-Kweon;Choi, Yun-Cheul;Lee, Yong-Taeg
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.699-708
    • /
    • 2007
  • Reinforced concrete deep beams are general structural members used as transfer-girder, pile cap, foundation wall and so on. They have a complex stess formation. Generally, failure mechanisms differ from either continuous deep beams or simple supported deep beams. In continuous deep beams, a negative moment is occurred over intermediate support and the location of maximum moment coincide with high shear force. Therefore, failure usually occurs at this region. While on the other hand, in simple supported deep beam, the region of high shear coincides with the region of low moment. The web opening of deep beams for accepting a facility makes shear behaviors of deep beams more complex and gives rise to an expansion of crack around the opening and a decline of shear capacity of deep beams. Therefore, Engineers must determine a delicate reinforcement method to control a crack and increase a shear capacity. The purpose of this report is a computation of an effective reinforcement method through non-linear finite element method by means of adopting various reinforcement method as variables and a computation of shear capacity formula taking an effectiveness of reinforcement into consideration.

A Study on the Optimal Design Method of Reinforced Concrete Two Way Slabs (Direct Method에 의한 鐵筋콘크리트 二方向슬라브의 最適設計에 관한 硏究)

  • Kim, Yong-Hee;Lyu, Hong-Leal;Park, Moon-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.97-105
    • /
    • 1984
  • We have, at present, found some studies on the optimum design of reinforced concrete about the simple slab but very few about the multi-story and multi-span slab. The aim of this study is to make a optimum design of coalesced beam and column slab constructure. Some results of the evaluation by using the optimalized algorithm that was developed in this study are as follows. 1. Slab was mainly restricted by the constraint of effective depth, bending moment, and minimum steel ratio; especially the effective depth was the preceding crifical constraint. In the optimum design of slab, therefore, the constraint about the minimum thickness should be surely considered. 2. This optimum design is good economy as much as some 3.4&~6.2% compared with the conventional design method. 3. In most case, it was converged by 3 to 6 iteratin regardless of the highest or lowest value and only in case of N=1 and case 1, there is a little oscillation after the 3rd iteration but it makes no difference in taking either the highest or lowest value because the range of oscillation is low as much as about 1.2% of the total construction cost. 4. In this study the result seeking for constraints that make no difference in the least cost design shows that shear stress and maximum steel ration may not be considered in it. 5. Bending moment was converged by one time iteration regardless of the initial value, while steel ratio, in most case, by two times because both bending moment and steel ratio are the fuction of effective depth.

  • PDF

Biomechanical Analysis of Golf Driver Swing Motion According to Gender

  • Bae, Kang Ho;Lee, Joong Sook;Han, Ki Hoon;Shin, Jin Hyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Objective: The purpose of this study is to investigate the differences in biomechanical variables of golf driving motion according to gender. Method: A total of 21 healthy golfers (11 men and 10 women) who have more than 5 years of professional experience and have been registered in the Korea Golf Association was recruited. A 250-Hz 8-camera motion capture system (MX-T20, Vicon, LA, USA) was used to capture the motion trajectories of a total of 42 reflective markers attached to the golfer's body and club. Moreover, two 1,000-Hz AMTI force plates (AMTI OR6-7-400, AMTI, MA, USA) were used to measure the ground reaction force. The mean and standard deviation for each parameter were then calculated for both groups of 21 subjects. SPSS Windows version 23.0 was used for statistical analysis. The independent t-test was used to determine the differences between groups. An alpha level of .05 was utilized in all tests. Results: There were differences in joint angles according to gender during golf driver swing. Men showed a statistically significantly higher peak joint angle and maximum range of angle in sagittal and frontal axis of the pelvis, hip, and knee. Moreover, women's swing of the pelvis and hips was found to have a pattern using the peak joint angle and range of angle in the vertical axis of the pelvis and hip. There were the differences in peak joint moment according to gender during golf driver swing. Men used higher joint moment in the downswing phase than women in the extensor, abductor, and external rotator muscles of the right hip; flexor and adductor muscles of left hip joint; and flexor and extensor muscles of the right knee. Conclusion: This result reveals that male golfers conducted driver swing using stronger force of the lower body and ground reaction force based on strength of hip and thigh than female golfers.

The Suggestion of Seismic Performance Values on Connections for Performance Based Design of Steel Structures (강구조 성능기반설계를 위한 접합부의 내진성능평가치 제안)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Lee, Jin-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.147-158
    • /
    • 2011
  • The purpose of this research was to analyze the connections of the seismic-performance values for domestic-performance-based designs. Basic research on the performance design method has been increasing of late, along with performance-based organization investigations. These investigations concern the performance level state of steel structure buildings. According to the performance limit state, seismic-performance values should be presented as appropriate steel structure engineering amounts. The first step, based on the full-scale steel structure experiments, involves researching on the making of a basic document. The moment-rotation angle relationship results of the experiment on the moment-frame connection were used to assort the functional and undamaged limits, which were assumed to be less than the yield moment. Moreover, the repairable and safety limits, which were assumed to exist between the yield and maximum moments, were assorted by investigating the accumulated plastic deformation ratio.

Thermotherapy and Dynamic Warm-up on the Kinetic Parameters during Drop-landing (드롭랜딩 시 국소부위 온열처치와 동적 준비운동이 하지의 운동역학적 변인에 미치는 영향)

  • Kim, Sungmin;Song, Jooho;Han, Sanghyuk;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.297-307
    • /
    • 2021
  • Objective: The aim of this study was to analyze kinetic variables between thermotherapy and dynamic warm-up during drop-landing. Method: Twenty male healthy subjects (Age: 21.85 ± 1.90 years, Height: 1.81 ± 0.06 cm, Weight: 68.5 ± 7.06 kg) underwent three treatments applied on the thermotherapy of femoral muscles and a dynamic warm-up. The thermotherapy was performed for 15 minutes while sitting in a chair using an electric heating pad equipped with a temperature control device. Dynamic warm-up performed 14 exercise, a non-treatment was sitting in a chair for 15 minutes. Core temperature measurements of all subjects were performed before landing at a height of 50 cm. During drop-landing, core temperature, joint angle, moment, work of the sagittal plane was collected and analyzed. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that Thermotherapy was increased temperature than other treatments (p = .000). During drop-landing, hip joint of dynamic warm-up was slower for angular velocity (p < .005), and left ankle joint was fastest than other treatments (p = .004). Maximum joint moment of dynamic warm-up was smaller for three joints (hip extension: p = .000; knee flexion/extension: p = .001/.000; ankle plantarflexion: p = .000). Negative work of dynamic warm-up was smaller than other treatments (p = .000). Conclusion: In conclusion, the thermotherapy in the local area doesn't affect the eccentric contraction of the thigh. The dynamic warm-up treatment minimized the joint moment and negative work of the lower joint during an eccentric contraction, it was confirmed that more active movement was performed than other treatment methods.