This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.
An integrating position estimation algorithm has been developed for the navigation system of a free-ranging AGV system. The navigation system focused in this research work consists of redundant wheel encoders for the relative position measurement and a vision sensor for the absolute position measurement. A maximum likelihood method and an extended Kalman filter are implemented for enhancing the performance of the position estimator. The maximum likelihood estimator processes noisy, redundant wheel encoder measurements and yields efficient estimates for the AGV motion between each sampling interval. The extended Kalman filter fuses inharmonious positional data from the deadreckoner and the vision sensor and computes the optimal position estimate. The simulation results show that the proposed position estimator solves a generalized estimation problem for locating the vehicle accurately in space.
다중 정현파의 주파수를 추정하는 최우도(ML) 방법은 주파수 추정에 정밀도를 보여주고 있으나, 최우도 함수가 주파수 추정에 쓰이는 경우 고도의 비선형성 때문에 추정에 많은 희생을 요구하고 있다. 본 논문에서는 최우도 방법의 비선형성을 개선하기 위해, 신호속에 포함된 정현 주파수의 추정을 용이하게 할 수 있는 단순화된 최우도 방법을 제시한다. 이 새로운 주파수 추정 방법을 백색 또는 칼라 잡음의 보기들에 적용하고, Monte-carlo 시뮬레이션을 실행하여 통계적 평균값, 평균 제곱근 및 상대 바이어스를 기존의 가장 우수한 방법인 MFBLP 방법과 비교한다. 또한 스펙트럼 파우어 밀도와 단위 원에서의 주파수 위치를 그림을 통하여 나타낸다.
In this paper, we propose a maximum-likelihood estimation(MLE) method to obtain the location and the amplitude of the pulses in MPE( multi-pulse excitation)-LPC speech synthesis using multi-pulses as excitation source. This MLE method computes the value maximizing the likelihood function with respect to unknown parameters(amplitude and position of the pulses) for the observed data sequence. Thus in the case of overlapped pulses, the method is equivalent to Ozawa's crosscorrelation method, resulting in equal amount of computation and sound quality with the cross-correlation method. We show by computer simulation: the multi-pulses obtained by MLE method are(1) pseudo-periodic in pitch in the case of voicde sound, (2) the pulses are random for unvoiced sound, (3) the pulses change from random to periodic in the interval where the original speech signal changes from unvoiced to voiced. Short time power specta of original speech and syunthesized speech obtained by using multi-pulses as excitation source are quite similar to each other at the formants.
Communications for Statistical Applications and Methods
/
제21권6호
/
pp.529-538
/
2014
In this paper, we consider maximum likelihood estimators of normal distribution based on type II censoring. Gupta (1952) and Cohen (1959, 1961) required a table for an auxiliary function to compute since they did not have an explicit form; however, we derive an explicit form for the estimators using a method to approximate the likelihood function. The derived estimators are a special case of Balakrishnan et al. (2003). We compare the estimators with the Gupta's linear estimators through simulation. Gupta's linear estimators are unbiased and easily calculated; subsequently, the proposed estimators have better performance for mean squared errors and variances, although they show bigger biases especially when the ratio of the complete data is small.
양전자방출단층촬영기기에서 영상을 획득하기 위해서는 동시 측정된 검출기 모듈의 섬광 픽셀의 위치 좌표를 서로 연결하는 과정이 필요하다. 이를 위해서 다수의 섬광 픽셀과 소수의 광센서를 사용하는 검출기 모듈에서는 평면 영상을 획득하여 각 섬광 픽셀의 영역을 나누어 감마선과 상호작용한 섬광 픽셀의 위치를 획득해야 한다. 또는 사용하는 섬광 픽셀의 수와 광센서의 수를 동일하게 구성할 경우는 섬광 픽셀 위치에 대한 위치 좌표를 직접 디지털 신호 좌표로 획득할 수 있다. 다수의 섬광 픽셀과 소수의 광센서를 사용하는 방법은 평면 영상 획득과 영역을 나누는 과정이 필요하며, 디지털 신호 좌표를 직접 획득하는 방법은 다수의 광센서와 신호처리 시스템이 필요하다. 이는 신호처리 과정이 복잡해지며, 비용이 상승하는 문제가 발생한다. 이를 해결하기 위해 본 연구에서는 다수의 섬광 픽셀과 소수의 광센서를 사용하여 평면 영상 및 영역의 분리과정을 수행하지 않고 디지털 신호 좌표를 획득하는 방법을 개발하였다. 최대우도함수를 사용하여 각 섬광 픽셀에서 획득한 신호를 통해 작성된 순람표를 통해 감마선과 상호작용한 섬광 픽셀의 위치 좌표값을 디지털 신호로 획득하는 방법이다. DETECT2000을 사용하여 시뮬레이션을 실시하였으며, 제시한 방법에 대해 검증을 실시하였다. 그 결과 모든 섬광 픽셀에서 정확한 디지털 신호 좌표를 획득할 수 있었으며, 이를 기존 시스템에 적용할 경우 신호처리 과정의 단순화로 보다 빠른 영상획득이 가능할 것으로 판단된다.
지상의 주력전차를 격추시키기 위한 공대지 유도미사일은 지상을 탐색하여 움직이는 표적을 탐지한 다음 위치를 추정하여 표적을 향해 나아가야 한다. 본 논문에서는 미사일이 향하는 전방의 지상을 좁은 빔 폭을 가진 빔을 기계적으로 좌우로 조향함으로써 일정한 지상구간을 탐색하며 Frequency Modulated Continuous Wave(FMCW)를 활용하여 이동하는 표적을 탐지하고 합성개구레이다(synthetic aperture radar: SAR)를 통해 위치를 추정한다. 또한 최대우도추정(maximum likelihood estimation: MLE) 기법을 통해 이동표적의 상대속도를 추정하여 레이다와 가까워지는 혹은 멀어지는 정도를 알 수 있으며 상대속도가 고려된 위상기록(phase history)을 통해 보정된 정합필터로 레이다 이미지(image)를 형성한다.
Communications for Statistical Applications and Methods
/
제14권3호
/
pp.561-576
/
2007
Five plotting positions are applied to the computation of probability weighted moments (PWM) on the parameters of the generalized logistic distribution. Over a range of parameter values with some finite sample sizes, the effects of five plotting positions are investigated via Monte Carlo simulation studies. Our simulation results indicate that the Landwehr plotting position frequently tends to document smaller biases than others in the location and scale parameter estimations. On the other hand, the Weibull plotting position often tends to cause larger biases than others. The plotting position (i - 0.35)/n seems to report smaller root mean square errors (RMSE) than other plotting positions in the negative shape parameter estimation under small samples. In comparison to the maximum likelihood (ML) method under the small sample, the PWM do not seem to be better than the ML estimators in the location and scale parameter estimations documenting larger RMSE. However, the PWM outperform the ML estimators in the shape parameter estimation when its magnitude is near zero. Sensitivity of right tail quantile estimation regarding five plotting positions is also examined, but superiority or inferiority of any plotting position is not observed.
본 논문은 노이즈가 비 정규 분포를 따르는 수중 환경에서 비 선형 필터 기법에 따른 Mass-Damper-Spring (MBK) 시스템 위치추정에 관한 연구 내용이다. 최근 위치 추정에 사용되는 필터는 확장 칼만 필터 (EKF: Extended Kalman Filter) 와 파티클 필터(Particle Filter)가 주목 받고 있다. EKF는 가우시안 잡음 (Gaussian Noise) 이 존재하는 비선형 시스템에서 정확도가 높은 알고리즘으로 널리 사용되고 있지만, 수중 환경과 같이 비 가우시안 잡음이 존재하는 경우 사용에 많은 제약이 따른다. 이에 본 논문에서는 상태예측을 기반으로 둔 EKF와 비교하여, 통계적 발생 가능성 인자 (Maximum Likelihood) 에 기반한 분포 재해석 기법을 이용한 개선된 ODPF (One-Dimension Particle Filter)를 제안한다. 모의 실험을 통하여 non-Gaussian noise가 존재하는 수중 환경에서 EKF와 제안한 Particle filter를 사용한 위치 추정 결과를 비교 분석하였으며, 계산 용량 및 통계 샘플이 충분한 경우 ODPF가 EKF 대비 정확한 위치 추정 결과를 제공하는 것을 확인하였다.
To solve the problem of parameter optimization in image sensor-based visible light positioning systems, theoretical limits for both the location and the azimuth angle of the image sensor receiver (ISR) are calculated. In the case of a typical indoor scenario, maximum likelihood estimations for both the location and the azimuth angle of the ISR are first deduced. The Cramer-Rao Lower Bound (CRLB) is then derived, under the condition that the observation values of the image points are affected by white Gaussian noise. For typical parameters of LEDs and image sensors, simulation results show that accurate estimates for both the location and azimuth angle can be achieved, with positioning errors usually on the order of centimeters and azimuth angle errors being less than $1^{\circ}$. The estimation accuracy depends on the focal length of the lens and on the pixel size and frame rate of the ISR, as well as on the number of transmitters used.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.