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Abstract

Five plotting positions are applied to the computation of probability
weighted moments (PWM) on the parameters of the generalized logistic dis-
tribution. Over a range of parameter values with some finite sample sizes,
the effects of five plotting positions are investigated via Monte Carlo simu-
lation studies. Our simulation results indicate that the Landwehr plotting
position frequently tends to document smaller biases than others in the lo-
cation and scale parameter estimations. On the other hand, the Weibull
plotting position often tends to cause larger biases than others. The plot-
ting position (¢ — 0.35)/n seems to report smaller root mean square errors
(RMSE) than other plotting positions in the negative shape parameter es-
timation under small samples. In comparison to the maximum likelihood
(ML) method under the small sample, the PWM do not seem to be better
than the ML estimators in the location and scale parameter estimations doc-
umenting larger RMSE. However, the PWM outperform the ML estimators
in the shape parameter estimation when its magnitude is near zero. Sen-
sitivity of right tail quantile estimation regarding five plotting positions is
also examined, but superiority or inferiority of any plotting position is not
observed.
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1. Introduction

The maximum likelihood (ML) method has been usually regarded as the best esti-
mation technique on the parameters of several extreme value distributions (Jenkinson,
1955; Prescott and Walden, 1980). However, its limitations were reported in many arti-
cles. Landwehr et al. (1979a) and Hosking et al. (1985) claimed the decreasing accuracy
problems of the ML, method under small or moderate sample sizes for the Gumbel distri-
bution and Generalized Extreme Value (GEV) distribution, respectively. Similar results
for the small sample performance of the ML method in the Generalized Pareto (GP)
distribution were also documented in Hosking and Wallis (1987). Furthermore, the ML
method sometimes does not provide its local maximum of log likelihood (Hosking et al,
1985). In particular, when the ML method is applied to the multi-parameter estimation,
it often leads to such failures. In that case, iteration based approach may be requested,
which is computationally complicate. As an alternative, the probability weighted mo-
ments (PWM) method was considered, which is based on relatively simple algorithms.

The PWM method on the parameters of some extreme distributions was introduced
by Greenwood et al. (1979). Its superiority in the small sample performances over the
ML method was studied in numerous papers (Landwehr et al., 1979a; Hosking et al.,
1985; Hosking and Wallis, 1987). Hosking (1990) studied the PWM based L-moments
approach, and applied it to various distributions including the generalized logistic (GLO)
distribution. He claimed that this method is advantageous over conventional moment
methods due to the robustness to outliers. Moreover, he argued that the PWM method
tends to be reasonably efficient compared with the ML method under certain conditions
in cases of multi-parameter estimation.

The accuracy of the PWM method is known to be affected by the choice of the
plotting positions. Landwehr et al. (1979a) proposed a plotting position leading to
unbiased properties. Later, Landwehr et al. (1979b) recommended the plotting position,
(i — 0.35)/n for the Wakeby distribution. This plotting position was also recommended
for the estimation of the GEV and GP distributions by Hosking et al. (1985) and
Hosking and Wallis (1987), respectively. Haktanir and Bozduman (1995) compared the
effects of four plotting positions (Landwehr, (i — 0.35)/n, Weibull, Cunnane) for three
parameter log-normal, log-Pearson-3, GEV, and Wakeby distributions via simulation
studies. They used the parameter estimates from the annual flood peaks series in the
simulation. Specifically, using the quantile based relative errors, they compared box plot
outputs. They concluded that the Landwehr plotting position was slightly better than
others for the GEV and log-Pearson-3 distributions. For the log-normal distribution, the
Landwehr, (i — 0.35)/n, or the ML method was evenly good.

Recently, using the PWM method Gettinby et al. (2004, 2006) showed that the GLO
model performed better fitness to many financial dynamics than other extreme models.
Regardless of an increasing importance of the GLO distribution, the effects of plotting
positions for the GLO distribution were not rigorously investigated in the literature yet.
In this paper, five plotting positions are applied to the computation of the PWM on



Effects of Plotting Positions to the PWM 563

the parameters and right tail quantiles of the GLO distribution. Additional to the four
plotting positions used in Haktanir and Bozduman (1995), a plotting position by Gettinby
et al. {2006) is considered. Via Monte Carlo simulation studies, the effects of five plotting
positions are evaluated over a range of parameter values. For more complete analysis, the
PWM are additionally compared with the numerically computed ML estimators under
the small sample situation.

Our simulation results indicate that the Landwehr plotting position frequently tends
to document smaller biases than others in the location and scale parameter estimations.
On the other hand, the Weibull plotting position often tends to cause larger biases than
others. The plotting position (:—0.35)/n seems to report smaller root mean square errors
(RMSE) than other plotting positions in the negative shape parameter estimation under
small samples. Compared with the ML method under a small sample, the PWM do not
appear to provide better accuracy than the numerically computed ML estimators in the
location and scale parameter estimations documenting larger RMSE. However, the PWM
outperform the ML estimators in the shape parameter estimation when its magnitude is
near zero. Sensitivity of right tail quantile estimation regarding five plotting positions is
also examined, but superiority or inferiority of any plotting position is not observed.

The rest of the paper is organized as follows. In Section 2, the PWM method and
the GLO distribution are briefly reviewed. Five plotting positions are also introduced.
The accuracy of the PWM method for five plotting positions is examined via simulation
studies in Section 3, where the right tail quantile estimation results are reported. Some
concluding remarks are given in Section 4.

2. PWM Method and GLO Distribution

Hosking et al. (1985) specifically considered the hth PWM of a random variable X
with its marginal cumulative distribution function F(X) as follows:

B =E[X{F(X)}"], h=0,1,.... (2.1)

They suggested estimating (2.1) by ,

n
5 1 h
Brn= =) DPinTi,
n “
i=1

where p; ,, is a plotting position and z; is an ordered sample. According to them, some
reasonable choices of a plotting position such as p; , = (i —v)/n, 0 < v < 1, or p;p, =
(t—v)/(n+1-2v), —0.5 < v < 0.5, produce consistent estimators for (2.1).

There have been many versions of plotting positions. The oldest and simple well-
known one is i/(n + 1), which is referred to as a Weibull plotting position. A slightly
modified one is (i —0.4)/(n+0.2) by Cunnane (1978). Landwehr et al. (1979a) suggested
an unbiased estimator for (2.1) using the following plotting position

Pln=1li=1G=2) - (i = W)/[(n —Dn—2) -+ (n ~ b))
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Later, some plotting positions yielding better estimation results for the underlying distri-
bution were pursued. As mentioned, a plotting position (i—0.35)/n was shown to produce
good estimation results for the Wakeby, GEV and GP distributions in Landwehr et al.
(1979b), Hosking et al. (1985) and Hosking and Wallis (1987), respectively. Recently,
Gettinby et al. (2006) estimated the GEV and GLO distributions using a plotting posi-
tion p;n = (i + @)/(n + w), where & = {y/n(n —1) — (n+1)}/2 and w = 1 + 2a. The
effects of these five plotting positions (Weibull, Cunnane, Landwehr, (i — 0.35)/n, and
Gettinby) will be compared in the next section.

Gettinby et al. (2004, 2006) claimed that the GLO distribution provided better fit-
ness to the extremes in indices of share return series of many countries than other extreme
distributions. The marginal cumulative distribution function of the GLO distribution is
as follows:

1/¢
F(z)=1/ {1+{1—§(m—u)} }, £+#0, (2.2)

where z is bounded as 4 0/ < 2 < 0o under £ < 0 and as —c0 < z < p + /& under
§ > 0. If £ = 0, an ordinary logistic distribution is obtained. Three parameters, u, o and
€ stand for the location, scale, and shape parameters, respectively. Note that o should
be a positive value.

The L-moments or the PWM method for the parameter estimation of the GLO dis-
tribution was rigorously investigated by Hosking (1990). The L-moments are expected
values of some linear combinations of ordered statistics, which can be applied to es-
timating the measures of location, scale, skewness, and etc. For example, first three
L-moments m;, my and m3 indicate the location, scale and skewness measures of a distri-
bution, respectively. They have linear relationships with the PWM as follows: m; = Gy,

ma = 21 — o, m3 = 6832 — 61 + 3. The first three L-moments are estimated by 71, 712
and 7hs which are obtained by replacing 8, with 3. According to Hosking (1990) three
parameters in the GLO distribution are sequentially estimated as follows: 5 = —1g/Ma,
& =me/{TA+ETA - E)}, o = rhy + (g — &)/€. Besides the effects of the plotting
positions in the parameter estimation of the GLO distribution, we are also interested
in the quantile estimation cases. The p-quantile z(p) of the GLO distribution can be
computed from the following inverse distribution function of (2.2) (Hosking, 1990)

z(p) = p+ o[l — {(1 - p)/p}*|/€]. (2.3)

Using the methods above, the effects of aforementioned five plotting positions to the pa-
rameter and quantile estimations of the GLO distribution are investigated in the following
section.

3. Simulation Results

According to Hosking et al. (1985) and Hosking and Wallis (1987), the PWM meth-
ods on the parameters of the GEV and GP distributions are appropriate only under some
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specific range of shape parameters in the sense of both theory and practice. In particular,
their approximation efficiency is known to be appropriate when their shape parameters
are ranged from —0.2 to 0.2. For the GLO distribution, to the best of our knowledge,
those conditions have not been rigorously studied yet. However, according to our pilot
simulation experiments, the significantly decreasing accuracy seemed to be observed as
the shape parameter was farther away from zero. Due to these preliminary results, we
restricted the shape parameter space into the range from —0.6 to 0.6.

As it would be explained, some plotting positions tended to have different patterns
based on the sign of the shape parameter in our main simulation studies. Because of
this, we considered positive and negative signs of shape parameters separately when we
examine the scale and location parameter estimations. In particular, the shape parameter
values are fixed into 0.2 and —0.2 in those cases. Since these values are near zero, we
can attenuate the effect of the shape parameter itself and may be able to examine the
pure effects of the parameter of our interest. For same purposes, the scale and location
parameters are fixed into 0.2 and 0, respectively when other parameters are examined.
The scale parameter was investigated over the range from 0.2 to 5, which are positive
values. The location parameter was examined under the range from —10 to 10, which
are realistic. One referee kindly recommended reconsidering these spaces for the scale
and location parameters in the main simulation studies.

Five plotting positions (Weibull, Cunnane, Landwehr, (i — 0.35)/n, and Gettinby)
were considered. For each plotting position, we considered sample sizes 20, 50, 100 and
500. For each set of plotting position, parameters, and sample size, we generated the
GLO distribution 1,000 times, and evaluated the PWM estimation performance. The
bias and RMSE (in the parenthesis) for the PWM based shape parameter estimates are
reported in Table 3.1. Tables 3.2 and 3.3 include the scale parameter estimation results
in cases of positive and negative shape parameters, respectively. The location parameter
estimates with positive and negative shape parameters are reported in Tables 3.4 and 3.5,
respectively. In the tables, the M1, M2, M3, M4 and M5 represent (i —0.35)/n, Cunnane,
Weibull, Landwehr, and Gettinby plotting positions, respectively. According to Tables
3.1-3.5, larger deviations were overall observed as the true parameter value was farther
away from zero in the shape and scale parameters. Such patterns were not documented
in the location parameter. Since the PWM estimators are sequentially computed from
the shape parameter to the location parameter via the scale parameter, we investigated
the shape parameter estimation first.

Table 3.1 indicates that M1 seems to provide smaller RMSE than other plotting po-
sitions under the small sample sizes like 20 and 50 when the shape parameter is negative.
However, it is difficult to find any systematic superiority of M1 when the sample size is
larger than 50. The other interesting pattern we need to pay attention to is on M3. This
plotting position seems to provide larger biases than others when the shape parameter
is negative over all the sample sizes from 20 to 500. Such pattern is also observed when
the sample size is 500 under the positive shape parameter. Except for these two plotting
positions, we could not find any particular pattern of other plotting positions over the
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Table 3.1: The bias and root mean square errors (in the parenthesis) of the
PWM based shape parameter estimates over a range of —0.6 to 0.6 regarding
five plotting positions for the GLO distribution are reported. The location and
scale parameters are fixed into 0 and 0.2, respectively. Considered sample sizes
are 20, 50, 100, and 500. M1, M2, M3, M4 and M5 represent (i — 0.35)/n,
Cunnane, Weibull, Landwehr and Gettinby plotting positions, respectively. For
each set of sample size, parameters, and plotting position, the GLO distributions
are generated 1,000 times.

3

n —0.6 —0.4 —0.2 0.2 0.4 0.6
My | 01271 00532 —0.0047 —0.0841 —0.1396 —0.2176
) (0.1504) (0.1240) (0.1537) (0.1999) (0.2677)
M, | 01801 01023  0.0393 —0.0380 -0.0956 —0.1861
) (0.1753)  (0.1249 (0.1275& (0.1694)  (0.2441)
20 M, 0.2230) 0.1343  0.0623 ~0.1346  —0.2284
)

)
(0.1923)  (0.1275) (0.1293) (0.1927) (0.2714

Mg | 01274 0.0602°  0.0281 —0.0241 -0.0610 —0.115
. (0.1719)  (0.1405) (0.1392) (0.1754) (0.2121)
Ms | 01782  0.0894  0.0380° —0.0360 -0.0921 —0.1711
(0.2390)  (0.1683)  (0.1305) (0.1248) (0.1769) (0.2351)

)

)

M | 00859  0.0338  0.0063 —0.0290 —0.0618 —0.I211
(0.1517)  (0.1114) (0.0839) (0.0922) (0.1270) (0.1792
My | 0.0938  0.0454  0.0209 —0.0183 —0.0498 —0.098
(0.1565)  (0.1231)  (0.0900) (0.0886) (0.1209) (0.1584)
50 Ms | 0.1230°  0.0643 00326 —0.0264 —0.0677 —0.1254
(0.1753)  (0.1200) (0.0899) (0.0874) (0.1247) (0.1758
My | 00794  0.0314  0.0065 —0.0160 —0.0284 -—0.069
(0.1569)  (0.1182) (0.0908) (0.0889) (0.1229) (0.1519
Ms | 0.0996  0.0504  0.0162° —0.0098 -0.0420 —0.103
(0.1628)  (0.1232) (0.0856) (0.0841) (0.1203) (0.1642)
My [ 0.0553 00178 00003 —0.0159 —00335 —0.0726
(0.1209)  (0.0924)  (0.0655) (0.0644 (0.0936% (0.1306)
M, | 0.0666  0.0290  0.0088 —0.0090 -0.026
(0.1269)  (0.0960)  (0.0620) (0.0642) (0.0925) (0.1280)
100 Mz | 00727 00371 00118 —0.0134 —0.0315 —0.0804
(0.1281)  (0.0920)  (0.0630) (0.0624) (0.0971) (0.1324
)
)

M; | 00559 00190  0.0061 —0.0060 —0.0171 -0.059
(0.1242)  (0.0939

(0.0673
Ms | 0.0727  0.0305

(0.0656)  (0.0892) (0.1220)
0.0083° —0.0060 —0.0267 —0.0641
(0.1285)  (0.0896

M, | 0.0214 0.0036

(0.0657)  (0.0633)  (0.0908) (0.1297)

)

)

—0.0005 —0.0023 —0.0081 —0.0250

(0.0739)  (0.0491) (0.0293) (0.0296) (0.0476) (0.0748)

M, | 0.0260°  0.0067  0.0017 —0.0024 -—0.0077 -0.0221
(0.0774)  (0.0471)  (0.0299) (0.0295) (0.0473) (0.0756

500 Mz | 0.0340  0.0096  0.0039 —0.0033 —0.0094 -0.028
(0.0742)  (0.0468)  (0.0297) (0.0293) (0.0495% (0.073(2

M| 0.0193°  0.0057 00008 —0.0001 -0.006

(0.0780)  (0.0459) (0.0304) (0.0304) (0.0472) (0.0735

Ms | 00251  0.0082° 0.0017 —0.0031 -0.0061 -0.023

(0.0746)  (0.0479)  (0.0299) (0.0281) (0.0508) (0.0750)




Table 3.2: The bias and root mean square errors (in the parenthesis) of the
PWM based scale parameter estimates over a range of 0.2 to 5 regarding five
plotting positions for the GLO distribution are reported. The location and shape
parameters are fixed into 0 and 0.2, respectively. Considered sample sizes are 50,
100, and 500. M1, M2, M3, M4 and M5 represent (i —0.35)/n, Cunnane, Weibull,
Landwehr and Gettinby plotting positions, respectively. For each set of sample
size, parameters, and plotting position, the GLO distributions are generated 1,000
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times.

n 0.2 0.4 0.6 1 3 5
M, | —0.0070 —0.0158 —0.0243 —0.0478 -0.1649 -0.2409
(0.0427)  (0.0845)  (0.1279)  (0.2181)  (0.6438) (1.1051

M, | —0.0128 -0.0289 —0.0447 —-0.0827 —0.185 —0.354
(0.0428)  (0.0835)  (0.1295)  (0.2076)  (0.6442 (1.0591%

20 M;s | —-0.0188% -0.0376 —0.0545 —0.096 —-0.274 —0.426
(0.0443)  (0.0901)  (0.1308) (0.2169)  (0.6390)  (1.0581

M,y { —0.0057 —-0.0120 —-0.0185 —-0.0363 —0.0697 —0.093
(0.0416 (0.0837) (0.1197 (0.2087) (0.6210% 1.0922
Ms | —0.010 —0.0267 —0.039 —-0.0637 —0.192 —0.2434
(0.0417)  (0.0851)  (0.1190)  (0.2040)  (0.6471)  (1.0219)
M, | —0.0033 —0.0085 —0.0088 -0.0231  -0.0709 —(0.0849
(0.0268) (0.0537) (0.0749% (0.1269 (0.4011)  (0.6546

M> | —0.0057 —0.0111 -0.014 —-0.029 —0.0831 —-0.153
(0.0263)  (0.0534) (0.0786) (0.1328)  (0.3758)  (0.6608

50 Ms; | —0.008 —0.016 —0.020 —0.0304 —0.1347 —0.157
(0.0273) (0.0538) (0.0793 (0.1320g (0.3994 (0.6632

M, | —0.0037 —0.0046 —0.005 —0.017 —0.047 -0.072
(0.0259)  (0.0519)  (0.0797)  (0.1245)  (0.3798)  (0.6512

Ms | —0.003 —0.0105 —0.015 —0.0244 —-0.0778 —0.147
(0.0257)  (0.0520)  (0.0768)  (0.1286)  (0.3850)  (0.6436)
M, { —0.0017 —0.0040 —0.0078 —0.0091 —0.0181 —0.0687
(0.0182) (0.0371 (0.0523 (0.0912) (0.2612% (0.4677)
M, | —0.0031 —0.007 —-0.009 —0.0198 —0.052 —0.0795
(0.0178) (0.0359) (0.0527% (0.0909% (0.2756) (0.4623

100 Mz | —0.0047 —0.0070 —0.012 —0.018 —-0.0502 —-0.103
(0.0191)  (0.0371)  (0.0544) (0.0947)  (0.2798)  (0.4742)
M,y | —0.000 —0.0016 —0.0018 —0.0072 —0.0247 —-0.0126
(0.0185)  (0.0374)  (0.0533)  (0.0897) (0.2654% (0.4452

Ms | —0.0026 —0.0057 —0.0075 —0.0141 —0.045 —(0.067
(0.0186)  (0.0370)  (0.0559)  (0.0954)  (0.2741)  (0.4817)
M, | —0.0006 —0.0015  —0.0008 —0.0013 —-0.0115 —0.0000
(0.0081)  (0.0160)  (0.0252) (0.0405)  (0.1238)  (0.2076)
M, | —0.0006 -0.0019 —0.0035 —0.0036 —-0.0077 -0.0196
(0.0084)  (0.0160)  (0.0248)  (0.0406) (0.1199)  (0.2058

500 M3 | —0.001 —0.002 —0.0034 —0.0036 —0.0090 —0.013
(0.0083) (0.0168) (0.0245 (0.0418% (0.1198) 0.2082
My | —0.0003 0.0000 ~0.000 -0.002 —0.0041 —0.0005
(0.0081 (0.0165 (0.0241% (0.0406) (0.1239) (0.2058g

Ms | —0.000 —0.001 -0.001 —0.0034 —-0.0070 —0.020
(0.0084) (0.0162) {0.0252) (0.0417) (0.1230)  (0.2135)
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Table 3.3: The bias and root mean square errors (in the parenthesis) of the
PWM based scale parameter estimates over a range of 0.2 to 5 regarding five
plotting positions for the GLO distribution are reported. The location and shape
parameters are fixed into 0 and —0.2, respectively. Considered sample sizes are
20, 50, 100 and 500. M1, M2, M3, M4 and M5 represent (i — 0.35)/n, Cunnane,
Weibull, Landwehr and Gettinby plotting positions, respectively. For each set
of sample size, parameters, and plotting position, the GLO distributions are

generated 1,000 times.
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o

n 0.2 0.4 0.6 1 3 5
M; | —0.0I180 —0.0338 —0.0485 —0.0843 —02392 —0.3580
(0.0438)  (0.0838)  (0.1262) (0.2009) (0.6424)  (1.0301)

M, | 00131 —0.0260 -—0.0393 —0.0628 —0.2003 —0.3007
(0.0416)  (0.0853 (0.1267% (0.2167)  (0.6371 (1.0369g

20 M| —0.0194 —0.0372 —0.0573 —0.0875 —0.3004 —0.453
(0.0451)  (0.0858)  (0.1339)  (0.2276)  (0.6835) (1.0804

M, | =0.0070 —0.0101 20.0178 -0.0346 —0.0783 —0.129
(0.0409)  (0.0846)  (0.1248)  (0.2076) (0.6351) (1.0290

Ms | —0.0110 -0.0246 —0.0423 -0.0610 -0.2150 —0.318
(0.0423)  (0.0839)  (0.1268)  (0.2100)  (0.6224)  (0.9720)

M; [ —0.0079 00160 —0.0163 —0.0425 -0.1224 —0.1665
(0.0272)  (0.0520)  (0.0753)  (0.1298)  (0.4092) (0.6503

M, | =0.0062 —0.0108 —0.0198 -0.0250 -0.0749 —0.100
(0.0250)  (0.0541) (0.0792) (0.1311)  (0.4058) (0.6754)

50 M; | —0.0072 —0.0154 —0.0257 —0.0368 —0.1113 —0.1896
(0.0255 (0.0532% (0.0815)  (0.1317)  (0.3915) (0.6618)

My | —0.0028  -0.0032 —0.0074 —0.0174 —0.0193 —0.0567
(0.0262)  (0.0516)  (0.0779) (0.1244)  (0.3969) (0.6517)

Ms | —0.0056 —0.0084 —0.0146 —0.0251 —0.0668 —0.1106
(0.0262)  (0.0505)  (0.0771)  (0.1335)  (0.3814)  (0.6477)

M; [ —0.0040 —0.0090 —0.0110 — —0.0248 —0.0610 —0.085%
(0.0186)  (0.0376)  (0.0538)  (0.0902) (0.2673) (0.4707

M, | —0.0030 —0.0060 —0.0091 —0.0157 —0.0417 —0.049
(0.0181)  (0.0374) (o.o555g (0.0933)  (0.2989)  (0.4558)

100 M; | —0.0040 —0.0096 —0.0115 —0.0220 —0.0491 -—0.1197
(0.0193)  (0.0376)  (0.0546)  (0.0911)  (0.2904)  (0.4509

M; | —0.0013 —0.0023 —0.0030 —0.0111 —0.0103 —0.022
(0.0178)  (0.0370)  (0.0532) (0.0904% (0.2769)  (0.4528

M;s | —0.0037 —0.0061 —0.0056 —0.0152 —0.0503 —0.063
(0.0181)  (0.0375)  (0.0553)  (0.0913)  (0.2769)  (0.4585)

M; | —0.0008 ——0.0012 ——0.002] —0.0027 —0.0053 —0.0I87
(0.0082)  (0.0159)  (0.0243)  (0.0437 (0.1256% (0.2023)

M, | —0.0005 —0.0018 —0.0019 —00037 -—0.0117 —0.0211
(0.0083)  (0.0167) (0.0246§ 0.0416)  (0.1260)  (0.2087)

500 Ms; | —0.0010 -0.0014 —0.0023 00041 —0.0157 —0.0207
(0.0081)  (0.0158)  (0.0246)  (0.0400 (0.1246{ (0.2129)

My | -0.0002  —0.0011  0.0003 -0.0024 —0.0041 -—0.0144
(0.00832 (0.0159)  (0.0252)  (0.0408)  (0.1268) (0.2044

Ms | —0.0005 —0.0006 —0.0011 —0.0032 —0.0084 —0.010
(0.0084)  (0.0166)  (0.0250)  (0.0407)  (0.1298)  (0.2078)
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Table 3.4: The bias and root mean square errors (in the parenthesis) of the
PWM based location parameter estimates over a range of —10 to 10 regarding
five plotting positions for the GLO distribution are reported. The scale and shape
parameters are fixed into 0.2. Considered sample sizes are 20, 50, 100 and 500.
M1, M2, M3, M4 and M5 represent (i—0.35)/n, Cunnane, Weibull, Landwehr and
Gettinby plotting positions, respectively. For each set of sample size, parameters,
and plotting position, the GLO distributions are generated 1,000 times.

n ~10 -5 1 —02" 02 1 5 10
M —=0.0437 —0.0357 —0.0300 —0.0245 —0.0241 —0.0241 —0.0198 —0.0106
(0.0882) (0.0884 (0.0877% (0.0854) (0.0845) (0.0869) (0.0818) (0.0812)
M| —0.1771 —0.0998 —0.0282 ~0.0175 —0.0084 0.0057 0.0645 0.1125
(0.1965) (0. 1298% (0.0852) (0.0852) (0. O859% (0.0822) (0.0991) (0.1339)
20 Ms| —0.1680 —0.2412 —0.0928 —0.0390 —0.0052 0.0476 0.0948 0.0066
(0.2210) (0.2730) (0.1274) (0.1007) (0.0845) (0. 0974% (0.1167) (0.0746)

(

My4| 0.0025 -—0.0035 0.0013 0.0026 -0.0014 —0.0042 —0.0061 —0.0036

(0.0790) (0.0798) (0.0816) (0.0804) (0.0837) (0.0813) (0.085 g (0. O832g
Ms| —0.0111 —0.0109 —0.0107 —0.0094 —0.0099 —0. 0134 —-0.0119 —0.008
0.0812) (0.0811) (0.0798) (0.0798

(0.0548 (0.0526% (0.0534) (0.0526) (0.0531) (0.0531) (0.0516) (0.0519)

M,| =0.0700 —0.0388 —0.0117 —0.0089 —0.0045 0.0017 0.0258 0.0543

(0.0874) (0.0645) (0.0536) (0.0532) (0.0508) (0.0508) (0.0581) (0.0729)
(

50 Ms| —0.2534 —0.1659 —0.0385 —0.0170 —0.0071 0.0201 0.1114 0.1301
(0.2619) (0.1746) (0.0661) (0.0560) (0.0510) (0.0544) (0.1212) (0.1373)
M4|—0.0016 0.0004 0.0010° —0.0027 —0.0038 —0.0005 —0.0014 —0.0024

(0.0526) (0.0517) (0.0501) (0.0498) (0.0523) (0.0507) (0. 05013 (0.0505)
Ms| —0.0047 —0.0055 —0.0039 —0.0057 —0.0024 —0.0056 —0.0070 —0.0054
(0.0513) (0.0525) (0.0500) (0.0499) (0.0497) (0.0530) (0.0514) (0.0506)
M, [—0.0066 —0.0053 —0.0088 —0.0074 —0.0050 —0.0065 —0.0054 —0.0037

(0.0367) (0.0359) (0.0364) (0.0372) (0.036(2 (0.0364) (0.0372) (0.0365)
M| —0.0349 —0.0188 —0.0054 —0.0021 —0.0008 —0.0005 0.0126 0.0260
(0.0504) (0.0415) (0.0366) (0.0378) (0.0353% (0.0350) (0.0386) (0.0451)
100 Ms{—0.1590 —0.0808 —0.0217 —0.0089 —0.0022 0.0100° 0.0649 0.1153
(0.1632) (0.0891) (0.0430) (0.0382) (0.0371% (0.0384) (0.0739) (0.1198)

(

M;| 0.0007 0.0008° —0.0005 —0.0001 —0.0028 —0.0017 (—0.0001 0.0003

(0.0367% (0.0367) (0.0371) (0.0360) (0.0357) (0.0362) (0.0366) (0.0363
Ms| —0.0023 —0.0030 —0.0050 —0.0045 —0.0030 —0.001% —0.0034 —0.001
0.0372 0.0359

( (0.0167)

0.0058
(0.0165) (0.0173)
0.0141 0.0294
( (
(

0.0163)
0.0021

(0.0157) (0.0160) (0.0167) (0.0156) (0.0162) (0.0163)
Ma| —0.0074 —0.0035 —-0.0021 —0.0005 —0.0014 0.0001
(0.0173% (0.0167) (0.0160) (0.0163) (0.0160) (0.0159)

500 Ms| —0.0322 —0.0160 —0.0046 —0.0009 —0.0009 0.0024
(0.0362) (0.0232) (0.0163) (0.0168) (0.0156) (0.0161) (0.0214) (0.0339)
M| 0.0005 —0.0010 0.0002° —0.0010 0.0002" 0.0002" 0.0000" —0.0005
(0.0156) (0.0161) (0.0165) (0.0161) (0.0165) (0.0163) (0.015 g (0.0165)

M;s| —0.0006 —0.0006 0.0002 —0.0006 0.0002° 0.0003 —0.001 00011
(0.0158) (0.0156) (0.0155) (0.0156) (0.0155) (0.0162) (0.0161) (0.0155)
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Table 3.5: The bias and root mean square errors (in the parenthesis) of the
PWM based location parameter estimates over a range of —10 to 10 regarding
five plotting positions for the GLO distribution are reported. The scale and
shape parameters are fixed into 0.2 and —0.2, respectively. Considered sample
sizes are 20, 50, 100 and 500. M1, M2, M3, M4 and M5 represent (i — 0.35)/n,
Cunnane, Weibull, Landwehr and Gettinby plotting positions, respectively. For
each set of sample size, parameters, and plotting position, the GLO distributions
are generated 1,000 times.

n
n ~10 -5 -1 02 02 1 5 10
Mi| n/a —0.0056 —0.0044 —0.0054 —0.0072 —0.0038 0.0080 0.0078
n{a - (0.0788) (0.0809) (0.0818) (0.0763) (0.0784) (0.0847) (0.0788)
M,|—0.1107 —0.0640 —0.0040 0.0114 0.0188° 0.0266 0.1037 0.1749
(0.1336) (0.1004) (0.0838) (0.0838) (0.0809) (0.0842) (0.1331) (0.1950)
20 M;|—0.0040 —0.0954 —0.0533 0.0087 0.0323  0.0980 0.2356 0.1620
(0.0731) (0.1177) (0.0976) (0.0854) (0.0951) (0. 1301% (0.2695) (0.2198)
M| 0.0025  0.0006" 0.0032° 0.0013 —0.0004 —0.0017 0.0023 0.0015
(0.0794) (0.0833) (0.0825) (0.0826) (0.0789) (0.0798) (0.0812) (0.0838)
M;s| 0.0080 0.0115 0.0152° 0.0151 0.0131° 0.0100° 0.0105 0.0146
(0.0814) (0.0833) (0.0846) (0. OSJ (0.0816) (0.0814) (0.0821) (0.0808)
M1|-0.0016 —0.0023 —0.0021 —0.0021 0.0016 —0.0005 0.0010 — 0.0007
(0.0513) (0.0510) (0.0482) (0.0511) (0.0504) (0.0501) (0.0512) (0.0486)
M,|-0.0555 —0.0259 —0.0003 0.0060 0.0071" 0.0126 0.0419 0.0717
(0.0751) (0.0568) (0.0506) (0.0500) (0.0517) (0.0520) (0.0674) (0.0885)
)
)

50 M;|—0.1329 —0.1112 —0.0207 0.0006 0.0168 0.0374 0.1626 0.2553
(0.1403) (0.1208) (0.0555) (0.0512) (0.0540) (0.0657) (0.1714) (0.2639)
M| 0.0000° 0.0007 -—0.0004 0.0018" 0.0023 0.0019° 0.0011 0.0029
(0.0516) (0.0509) (0.0494) (0.0513) (0.0509) (0.0518) (0.0523) (0.0507)
M;s| 0.0075 0.0055 0.0038 0.0060 0.0058° 0.0016 0.0074  0.0044
(0.0489) (0.0496) (0.0530) (0.0518) (0.0507) (0.0513) (0.0515) (0.0497)
M;|—0.0001 —0.0007 —0.0011 —0.0014 0.0007 —0.0020 —0.0014 —0.0002
(0.0333) (0.0351) (0.0362) (0.0348) (0.0344) (0.0370) (0.0338) (0.0362)
M| -0.0264 —0.0130 0.0001 0.0026 0.0054 0.0057 0.0192° 0.0362
(0.0431) (0.0381) (0.0369) (0.0356) (0.0366) (0.0343) (0.0405) (0.0524)
100 Ms|-0.1143 —0.0634 —0.0090 0.0019 0.0085 0.0215 0.0846 0.1602
(0.1189) (0.0732) (0.0365) (0.0352) (0.0375) (0.0423) (0.0927) (0.1643)
M| 0.0000° —0.0001 0.0012" '0.0033 0.0016 0.0001 0.0003  0.0005
(0.0368) (0.0340) (0.0367) (0.0357) (0.0360) (0.0340) (0.0361) (0.0366)
M;| 0.0012 0.0022° 0.0029° 0.0014 0.0034 0.0012° 0.0008  0.0032
(0.0352) (0.0352) (0.0362) (0.0365) (0.0366) (0.0369) (0.0356) (0.0354)
M;|=0.0004  0.0002 —0.0005 0.0009 0.0001 0.0001 —0.0002 _ 0.0000
(0.0158) (0.0151) (0.0157) (0.0164) (0.0164) (0.0156) (0.0160) (0.0162)
M| —0.0058 —0.0028 0.0009 0.0000 0.0017 0.0010° 0.0040 0.0064

(0.0168) (0.0165) (0.0162% (0.0159) (0.0166) (0.0154) (0.0164) (0.0174)
500 Ms|—0.0290 —0.0147 —0.0022 0.0006 0.0028 0.0042 0.0166 0.0326
(0.0329) (0.0214) (0.0164) (0.0165) (0.0160) (0.0167) (0.0234) (0.0367)
M| 0.0002° 0.0003 —0.0003 —0.0002 0.0000° —0.0004 0.0006 0.0004
(0.0155) (0.0158) (0.0159) (0.0158) (00161?; (0.0161) (0.0160) (0.0161)
0.0013° 0.0011° 0.0011 —0.0001 —0.000 00004 0000 ~0.0001
(0.0163) (0.0161) (0.0156) (0.0163) (0.0157) (0.0163) (0.0161) (0.0159)

S
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considered parameter values. In Table 3.2, M4 seems to outperform other plotting posi-
tions in the sense of smaller biases over all the sample sizes evenly. As we have observed
in Table 3.1, M3 tends to document larger biases than other plotting positions under
the sample sizes 20 and 50. Similar patterns are observed in Table 3.3. M3 tends to
document larger biases than others under a small sample like 20. M3 also reports larger
RMSE than others under the small sample. A very interesting pattern in Table 3.3 is on
M4. M4 provided smallest biases over all the sample sizes. In Table 3.4, we frequently
observe that M4 provides smaller biases than others under small samples. Similar pat-
tern happens under sample size 20 in Table 3.5. M3 tends to frequently provide larger
biases and RMSE than other plotting positions over all the samples in both Tables 3.4
and 3.5.

For more complete analysis, the referees suggested comparing the PWM with the
ML estimators under the small sample situation. Under the large sample case, the ML
estimators are usually expected to be better than the PWM method. Meanwhile, the
PWM are expected to be of some advantages over the ML estimators under the small
samples. To the best of our knowledge, the ML algorithm on the parameters of the GLO
distribution has not been rigorously considered yet in the literature. Furthermore, the
ML estimation procedure might require a computationally complicated iteration based
algorithm due to the multi parameters of the GLO distribution. Regarding this, one
referee kindly proposed making a numerical computation of the ML estimator for one
parameter of our interest with others fixed. Following the referee’s suggestion, we first
built the negative log likelihood function —L of the GLO distribution as follows:

—L=nlogo+(1-&)> yi+2) log(l+e¥),
i=1 i=1
where y, = —£71log{l — £(z; — p)/o}. By numerically minimizing the negative log
likelihood function with respect to the parameter of our interest, the ML estimator was
obtained. Total four cases of simulation studies were considered here. Case 1 is for the
ML estimators of the shape parameter (£) values from —0.6 to 0.6 with (u, o) = (0,0.2).
Cases 2 and 3 are for the scale parameter (o) values over a range from 0.2 to 5 with
(#,€) = (0,0.2) and (0, —0.2), respectively. Cases 4 and 5 are for the location parameter
(u) values ranged from —5 to 5 with (o,£) = (0.2,0.2) and (0.2, —0.2), respectively. For
each set of parameters, the GLO distributions were generated 1,000 times and the ML
estimators were evaluated via mean bias and RMSE. The considered sample size was 20.
Some results are in Table 3.6. According to the results for Cases 4 and 5 in Table 3.6 and
the outcomes for the sample sizes 20 in Tables 3.4 and 3.5, the ML estimators appeared
to provide smaller RMSE than any of the aforementioned PWM. This implies that the
ML estimators for the location parameter seemed to be better than the PWM in the
sense of minimum RMSE under the small sample. In the aspect of the minimum mean
bias criterion, some PWM methods performed better than the ML estimators. Similar
patterns were observed in Cases 2 and 3. Documented RMSE of the ML estimators
regarding the scale parameter estimation were smaller than those of all the PWM for
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Table 3.6: The bias and root mean square errors (in the parenthesis) of the
maximum likelihood (ML) estimates over several ranges of shape, scale, location
parameters for the GLO distribution are reported. Case 1 is for the ML estimators
for several shape parameter values (£) with (u,0) = (0,0.2). Cases 2 and 3 are
for the ML estimators for several scale parameter values (o) with (u, £) = (0,0.2)
and (0, —0.2), respectively. Cases 4 and 5 are for the ML estimators for several
location parameter values (1) with (o, £) = (0.2,0.2) and (0.2, —0.2), respectively.
Considered sample size is 20. For each set of parameters, the GLO distributions
are generated 1,000 times.

£
Casel| —0.6 —0.4 —0.2 0.2 0.4 0.6
blas | —0.0795 —0.0817 —0.0099  0.0328 0.0682  0.0692
rmse | (0.1620)  (0.2253)  (0.3448)  (0.2410)  (0.2043)  (0.1729)

Case2| 02 0.4 0.6 1 3 5
blas | —0.0045 —0.0058 —0.0132 =001 —00256 —0.0720
rmse | (0.0340)  (0.0686)  (0.1022) (0.1683) (0.5115) (0.8562)

Case3 | 02 0.4 0.6 1 3 5
blas | —0.0054 —0.0036  —0.0066 00055 —0.0814 —0.0438
rmse | (0.0340) (0.0647)  (0.1009)  (0.1698)  (0.5207)  (0.8330)

Cased | -5 -1 —0.2" 0.2 1 5
bias | —0.0013  —0.0013 —0.0020 =0.0034 —0.0053 —0.000T
rmse | (0.0669)  (0.0669)  (0.0702)  (0.0700) (0.0661)  (0.0701)

Case5| -5 -1 —02" 0.2 1 5
bias | 0.0060 00042 0.007T 00071 0007 0.0039
rmse | (0.0696) (0.0679)  (0.0709)  (0.0695)  (0.0710)  (0.0695)

a sample size 20 in Tables 3.2 and 3.3. Meanwhile, the ML estimators for the shape
parameter in Case 1 tended to be outperformed by all the PWM for a sample size 20
in Table 3.1 when its magnitude was near zero: (—0.4,-0.2,0.2,0.4) in the sense of
the minimum RMSE. In particular, the degree of inaccuracy of the ML estimators was
stronger as the shape parameter was closer to zero: (—0.2,0.2). On the other hand, the
ML method was better than any of the PWM method when the shape parameter was
away from zero: (—0.6,0.6). Our results indicated that the accuracy of the PWM was
reduced as the magnitude of the shape parameter value was going farther away from zero.
These results on the shape parameter estimation are similar with those in GEV and GP
distributions. Note that the accuracy of the PWM based shape parameter estimator for
the GEV and GP is known to get worse as the shape parameter value goes farther away
from zero.

We have compared five plotting position based PWM on the parameter estimation
of the GLO distribution via the simulation studies. Additionally, the ML estimators are
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Table 3.7: The bias and root mean square errors (in the parenthesis) of the PWM
based 0.9, 0.99, 0.999 quantile estimates regarding five plotting positions for the
GLO distribution with sample size 500 are reported. The shape parameter over
a range of —0.4 to 0.4 is considered. The location and scale parameters are fixed
as zero and 0.2, respectively. M1, M2, M3, M4 and M5 represent (i — 0.35)/n,
Cunnane, Weibull, Landwehr, and Gettinby plotting positions, respectively. z(p)
indicates p-quantile. For each set of sample size, parameters, and plotting posi-
tion, the GLO distributions are generated 1,000 times.

3

p —0.4 —0.2 0.2 0.4
z(p) | 0.7041 05518 _ 0.3556 _ 0.2924
M, | —0.0036 —0.00I5 =0.0002 —0.0002
(0.0653)  (0.0391) (0.0153) (0.0102)
Mz | 0.0001° —0.0017 =—0.0003 —0.0006
(0.0671)  (0.0401) (0.0155) (0.0104
09 M | —0.0049 00018 -—0.0009 —0.000
(0.0666)  (0.0384)  (0.0152) (0.0101)
My | —0.0062 -0.0021 —0.0003 0.0001
(0.0636 (0.0398% (0.0149)  (0.0104
Ms | ~0.0052 —0.0032 —0.0010 -—0.000
(0.0666)  (0.0400)  (0.0154) (0.0106)
z(p) | 2.6421 15068  0.6011 _ 0.4204
M; | —0.0082 =0.0022 0.0035 _ 0.0041
(0.5022)  (0.1479)  (0.0314) (0.0232)
M, | 0.0070° —0.0027 0.0012  0.0022
(0.4846% (0.1556)  (0.0299) (0.0236)

099 M | —0.0232 —0.0034 0.0007  0.0032
(0.4791)  (0.1508)  (0.0303) (0.0236)
My | —~0.0265 —0.0051 0.0005  0.0033
(0.4424)  (0.1535) (0.0311) (0.0233)
Ms | —0.0196 —0.0040 0.0000 0.0037
(0.4708)  (0.1562)  (0.0307)  (0.0239)
z(p) | 74213 20803 _ 0.7488 _ 0.4684
M, | 0.0980  0.006]  0.0085  0.0076
(2.9415)  (0.4225) (0.0540) (0.0347)
M, | 0.1327 00067 0.0038  0.0046
(2.4676)  (0.4471)  (0.0505) (0.0350)
0.999 M; | 0.0076  0.0056  0.0037  0.0063
(2.3547 (0.4397% (0.0517)  (0.0352)

M, | ~0.0158 —0.0012 0.0023  0.0061
(2.1757)  (0.4403) (0.0533) (0.0348)
Ms | 0.0255 00089  0.0020 0.0071
(2.2950)  (0.4540)  (0.0517) (0.0357)

numerically obtained, and are compared with the PWM. We have summarized the main
important simulation results as follows:

1. Landwehr plotting position tended to provide more unbiased estimation results
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than other plotting positions in the location and scale parameter estimations.

2. Weibull plotting position frequently tended to cause larger biases than other plot-
ting positions under the location, scale, and shape parameter estimations over
several sample sizes.

3. Plotting position (i —0.35)/n seemed to provide smaller RMSE than other plotting
positions in the negative shape parameter estimation under small samples like 20
and 50.

4. ML estimator tended to provide smaller RMSE than any of the PWM methods
in the location and scale parameter estimations under a small sample 20. Mean-
while, the ML estimators were outperformed by all the PWM above in the shape
parameter estimation when its magnitude was near zero: (—-0.4,—0.2,0.2,0.4).

Concluding this section, we compared the right tail quantile estimation performance
for each five plotting position. Three right tail quantiles, p = 0.9,0.99, and 0.999 for a
sample size 500 were considered. We restricted the location and scale parameters into zero
and 0.2, respectively. Over a range of shape parameter from —0.4 to 0.4, the quantiles
above were estimated. Aforementioned five plotting positions were considered again.
For each set of parameter and plotting position, we generated the GLO distribution
1,000 times. First, we estimated the parameters using the PWM method, and estimated
the quantiles using the function (2.3). The bias and RMSE of the quantile estimates
are reported in Table 3.7. Most of the plotting positions seemed to document evenly
good accuracy under larger shape parameter value and smaller quantile value. On the
other hand, they seemed to indicate evenly bad accuracy under smaller shape parameter
value and more right tail extreme quantile value. Unlike the parameter estimation cases,
we could not find a consistently superior or inferior plotting position in the quantile
estimation in the sense of either minimum RMSE or minimum bias criteria. To make our
analysis complete, we also considered similar experiments for a sample size 20. However,
we do not report the simulation outputs here since neither superior or inferior plotting
position was observed in the simulation studies.

4. Conclusion

In this paper, the effects of five plotting positions to the computation of the PWM on
parameters and quantiles of the GLO distribution have been examined via Monte Carlo
simulation studies. The Weibull, Cunnane, Landwehr, (i—0.35)/n, and Gettinby plotting
positions were considered. We applied sample sizes 20, 50, 100, 500 and some appropriate
range of parameter values. In the sense of minimum RMSE and minimum bias criteria, we
investigated the accuracy of estimation. In the simulation studies, the Landwehr plotting
position seemed to outperform other plotting positions in the sense of smaller biases in
the scale and location parameter estimations. On the other hand, the Weibull plotting
position frequently tended to perform badly in many parameter estimation under small
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or large samples documenting larger biases than other plotting positions. The plotting
position (i—0.35)/n seemed to be better than others in the sense of smaller RMSE in the
negative shape parameter estimation under small samples. For more complete analysis,
we have compared the PWM with the numerically computed ML estimators under a
small sample. The ML estimators tended to have better accuracy than the PWM in the
location and scale parameter estimation. However, the PWM seemed to be better than
the ML estimators in the shape parameter estimation when the magnitude of the shape
parameter is near zero. We also examined the sensitivity of right tail quantile estimation
regarding five plotting positions. No superior or inferior plotting position was observed
in the quantile estimation.
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