• Title/Summary/Keyword: maximum flame temperature

Search Result 164, Processing Time 0.018 seconds

Weed Control by Flame (화염을 이용한 잡초방제 연구)

  • 姜和錫;文學洙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.331-336
    • /
    • 2001
  • This study was to develop a kerosene flame weeder. An air compressor was driven though the PTO of a tractor to provide necessary air for fuel combustion and proper pressure to supply fuel from fuel tank to the nozzle. It was found that the flame was extinguished very easily by wind and vibration of the tractor. This trouble could be solved by attaching a burner cap, which is a modified venturi tube, at the end of the nozzle. The constructed flame weeder was tested for the weeding capability in the prepared field. Weed extinction rate and weight decrease rate were analysed. Measured maximum flame temperature was 1,121$\^{C}$ when the fuel consumption was 13.41 kg/h and fuel supply pressure was 88.2 kPa. The maximum temperature occurred at 20cm from the front end the burner, and it decreased to 46$\^{C}$ as the distance increased to 110cm. The flame length of up to 70cm, where the flame temperature was higher than 372$\^{C}$, would be used for weeding purpose. Weed extinction rate and weight decreasing rate increased as the fuel consumption increased. The flame weeder was evaluated to be a practical weeder through improvement as the weed extinction rate and weight decrease rate were analysed to be 75% and 85%, respectively when the fuel consumption was 116.87kg/ha.

  • PDF

An Improvement on the Self Diagnostic Characteristics of the Triple Quard Channel Infrared Flame Detector (삼파장 4채널 적외선식 불꽃감지기의 자가진단 성능 개선)

  • Song, Hyun Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • There is needed the quard channel triple wave lengths pyroelectric infrared flame detector to recognize the unique characteristics of fire sources in various type. This system detects the triple wave lengths of infrared flame emitting maximum radient energy and scattering frequency of flame. The quard channel infrared flame detector detects the duplicate wave lengths of maximum radient energy to enhance the accuracy of detecting fire. Especially this paper focuss on development of the self diagnosis function system including contamination, temperature and input voltage. Therefore, the prevention and early suppression of fire is available.

Numerical Study of Interaction between Hydrogen and Hydrocarbon Flames (수소화염과 탄화수소화염의 상호작용에 관한 수치계산 연구)

  • Oh, Chang-Bo;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.12-17
    • /
    • 2010
  • Numerical simulations were performed for the prediction of the flame structure during the interaction between hydrogen and hydrocarbon flames. A counterflow flow geometry was introduced to establish the interacting two flames. Methane was used as a representative hydrocarbon fuel in this study. A well-known numerical code for the counterflow flame, OPPDIF, was used for the simulations. The detailed chemistry was adopted to predict the flame structure reasonably. The interaction of two one-dimensional premixed flames established in counterflow burner was investigated with the global strain rate and velocity ratio. It was found that the maximum temperature located near the methane flame surface while the heat release rate of methane was lower than hydrogen flame. The flame thickness become narrow with increasing the velocity ratio while the global strain rate was fixed. The local strain rate and heat release rate at the methane flame surface were correlated with the global strain rate, while those at the hydrogen flame were not correlated with the global strain rate. However, the maximum temperature of the interacting flames was correlated with the global strain rate.

Study on Optimization of Flame Peeling System for Chestnut (II) - Optimization of Flame Peeling Process for Chestnut - (밤의 화염박피 시스템 최적화에 관한 연구(II) - 화염박피 공정의 최적화 -)

  • 김종훈;박재복;최창현;이충호
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • The purpose of this study was to evaluate an optimization model to determine the operation conditions of the chestnuts flame peeling system. The results of this study were summarized as follows. The optimization model was developed and evaluated to represent the flame peeling characteristics of the domestic chestnuts. When the heating depth was selected for various utilization of the peeled chestnuts, the model could determine the optimal conditions of the hardness of the chestnut shells, the flame temperature, and the flame time to get the maximum peeling ratio of the chestnut flame peeling system. When the heating depth was limited to 2.2 mm, the optimization model determined the proper operation conditions and the maximum peeling ratio such as 1594 g/$\textrm{mm}^2$ of the hardness of the chestnut shells, 780$^{\circ}C$ of the flame temperature, 29 second of the flame time, and 98.1 % of the peeling ratio.

A Study on the Flame Growth Characteristics of Household Items(Refrigerator·Washing machine·Drawer·Sofa) (생활용품(냉장고·세탁기·장롱·소파)의 화재성장 특성 연구)

  • Park, Young Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.45-51
    • /
    • 2015
  • This study was full-scale combustion test for flame growth characteristics and temperature characteristics analysis to predict the risk of household Items fire when fire occurs. Experimental results, Refrigerator flames were the highest measured in 15 min time, and Washing machine is between 20 ~ 30 min, Drawer is 5 min, Sofa was enabled up to the size of the flame 15 min. In addition, the maximum combustion temperature was found from the time 20 min ~ 25 min, Sofa is temperature was elevated up to $1190^{\circ}C$, Refrigerator is $1,162^{\circ}C$, Drawer is $822^{\circ}C$, Washing machine appeared to be rising up to $670^{\circ}C$. Therefore, in the case of the maximum temperature of combustion Sofa it showed relatively high.

A Study on the Flame Structure and Combustion Charactexistics of a Premixed Flame Stabilized by a Streamline Step( $\Pi$) (유선형 스텝에 의해 안정화된 예혼합화염의 구조와 연소특성에 관한 연구 ($\Pi$))

  • 이재득;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1661-1668
    • /
    • 1990
  • In a turbulent premixed flame stabilized by the streamline step, and dominated by a coherent eddy, a flame micro-structure was investigated with analyzing the signals of temperature, the ion current, and schieren phtographs simultaneously. Generally the contours of large scale coherent eddies of schlieren photographs was considered as the flame front, however, the main reaction can be occurred within the eddy as a structure of fine flamelets scale. The surrounding burned gas of flamelets could not propagate to a unburned mixture, obstructing flamelets from propagating to a unburned mixture. Consequently, it could restrain flashback. The main reaction region was found to be located at higher temperature of the burned gas rather than at maximum rms of fluctuating temperature. The peak probability of higher temperature was 6 times greater than that of lower temperature. As it was difficult to infer a flame structure from PDF distribution of the fluctuating temperature in form of bimodal shape, it should be taken into consideration with other informations related to the sensitive flame front, for instance, ion current.

Soot Formation in a Double-Concentric Diffusion Flame (동축 이중 확산화염의 매연 생성 특성)

  • Jurng, Jongsoo;Lee, Gyo-Woo;Ko, Bum-Seung;Kang, Kyung-tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1355-1362
    • /
    • 1999
  • An experimental study on a double-concentric diffusion flame(DDF) has been carried on in order to Investigate the characteristics of soot formation compared to a normal coflow diffusion flame(NDF). Laser extinction technique has been used for an ethylene($C_2H_4$) and air flame with various flow rates. Soot formation In the double-concentric diffusion flame was enhanced by the inner inverse diffusion flame due to the increase in flame temperature and also suppressed due to the nitrogen-dilution from the inner air. Soot concentration at the flame axis of DDF was higher than that of the NDF, mainly because of the increase of temperature by inner flame. However, the maximum soot volume fraction of DDF was lower than NDF at the outer side of the flame, mainly due to the effect of nitrogen-dilution from the inner air.

Laminar Diffusion Flame in the Reacting Mixing Layer (반응혼합층의 층류확산화염)

  • Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.605-615
    • /
    • 1996
  • Laminar flows in which mixing and chemical reactions take place between parallel streams of reactive species are studied numerically. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. Ignition, premixed flame, and diffusion flame regimes are found to exist in the laminar reacting mixing layer at high activation energy. At high Mach numbers, ignition occurs earlier due to the higher temperatures in the unburnt gas. In diffusion regimes, property variations affect the laminar profiles considerably and need to be included when there are large temperature differences. The maximum temperature of a laminar reacting mixing layer is almost linear with the adiabatic flame temperature at low heat release, but only weakly at high heat release.

Combustion characteristics of coaxial diffusion flame with preheated air temperature and dilution level (예열공기온도와 희석비율에 따른 동축 확산 화염의 연소 특성)

  • Kim, Jin-Sik;Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.51-56
    • /
    • 2001
  • An experiment using preheated air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. Preheated air combustion generally produces high NOx emissions but it was known very well to reduce NOx emission by diluting the combustion air with inert gas in preheated air combustion. In our study, $N_2$ gas was used for diluent and propane was utilized for fuel. We set the combustion air temperature on 300K, 500K, 700K, 900K and dilution level from 21% to 10% in terms of oxygen concentration. NOx emission increased along increment of combustion air temperature and decreased along increment of dilution level(lowering of oxygen concentration in combustion air). Flame-off limit with dilution level enhanced, flame length became longer and the location of maximum flame temperature became lower with increasing of combustion air temperature.

  • PDF

Measurements of Flame Temperature and Radiation Heat Flux from Pool Fire with Petroleum Diesel Fuel (디젤연료의 액면화재로부터 화염온도와 복사열 측정)

  • Lim, Woo-Sub;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.78-83
    • /
    • 2007
  • Diesel, a kind of petroleum, which is used in vehicles, vessels, boilers etc causes great damage when a fire happens, because it has higher caloric value than gasoline or kerosene has at burning. Therefore, pool fire experiment was carried using diesel which is sold on the gas station and radiation heat flux that occurs from flame and inner temperature of flame at burning was estimated. The maximum instantaneous flame temperature of diesel was more than $900^{\circ}C$, and the average of maximum flame temperature was $800^{\circ}C$ which occurred at 0.5 H/D distance from the surface of inflammable liquid, the distance has more long that has the lower the temperature of flame. In case of radiation heat flux, it grew to vary according to the size and amount of sample. When the size of a container for experiment was 0.5 m and sample layer was 13 mm and 20 mm, the radiant heat was 92.29 kW and 117.43 kW each. When the container was 1.0 m, it was 364.35 kW and 405.88 kW each.