• Title/Summary/Keyword: maximum engine torque

Search Result 91, Processing Time 0.026 seconds

Characteristics of Transient Performance in a Turbocharged GDI Engine with TiAl Turbine (TiAl 터빈을 적용한 과급 직분식 전기점화 엔진의 과도운전 성능특성)

  • Park, Chansoo;Jung, Jinyoung;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • Turbocharged gasoline direct injection engine is one of promising technologies in the automotive industry. However, reduction in turbo-lag under transient operation is one of important challenging points to improve drivability. Engine transient performance was investigated in a 4-cylinder 2.0 L turbo-gasoline direct injection (T-GDI) engine using Inconel and TiAl (Titanium Aluminide alloy) turbine wheel turbochargers. The TiAl turbocharger performed superior transient boost pressure and torque rises under various engine transient operation conditions. These were mainly due to lower turbine rotational inertia of TiAl turbocharger. The Maximum boost pressure and torque build up were founded in 1500 rpm and 2000 rpm, instant load change from 20% to 100% of pedal position.

Numerical Analysis Dynamometer (Water Brake) Using Computational Fluid Dynamic Software

  • Cahyono, Sukmaji Indro;Choe, Gwang-Hwan;Sinaga, Nazaruddin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.103-111
    • /
    • 2008
  • One of the most popular internal combustion engines is the engine in the transportation device. Power is a parameter that shows the capabilities of an object that gives energy, for example the internal combustion engine. Power in this engine is measured by a device called dynamometer. The CFD (Computational Fluid Dynamic) fluent software was simulated several impeller variables to absorb power of engine. With that result, we knew the biggest dynamometer absorber power, cheapest and easy to be made. The hydraulic dynamometer is selected type of dynamometer as the result of design process. The basic principle of a hydraulic dynamometer is the same as centrifugal pump but it has low pump efficiency. The results of the test are maximum power and torque of the tested engine and the operation area of the selected hydraulic dynamometer.

  • PDF

A Study on Performance Characteristics of Farm Engine Using LNG (LNG를 이용한 농용엔진의 성능특성에 관한 연구)

  • Paek, Y;Cho, K-H
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 2005
  • This study was performed to find out performance characteristics and develop LNG engine. this system was designed and manufactured by modification of a diesel using the LNgas. The engine was manufactured to be able to change the compression ratio by changing thickness of the gasket. The results are summarized brake power and torque of the engine increased when compression ratio of the engine increased. The engine output showed more power with gasoline by 5-10% then LNG under compression ratio of 9.5.and maximum brake thermal effeiency was noted when air-fuel ratio was 15.5. The concentrations of NOx, CO and HC in the exhaust gas showed lower values with the engine fueled LNG then gasoline.

  • PDF

COMBUSTION AND EMISSION CHARACTERISTICS OF A TURBOCHARGED DIESEL ENGINE FUELLED WITH DIMETHYL ETHER

  • Wu, J.;Huang, Z.;Qiao, X.;Lu, J.;Zhang, L.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.645-652
    • /
    • 2006
  • This paper is concerned with an experimental study of a turbocharged diesel engine operating on dimethyl ether(DME). The combustion and emission characteristics of DME engine were investigated. The results showed that the maximum torque and power with DME could achieve a greater level compared to diesel operation, particularly at low speeds; the brake specific fuel consumption with DME was lower than the diesel at low and middle engine speeds. The injection delay of DME was longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of DME engine were lower than those of diesel. The combustion velocity of DME was faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, $NO_x$ emissions of the DME engine were reduced by 41.6% on ESC data. The DME engine was smoke free at all operating points of the engine.

On the Performance Improvement of the Diesel Engine by Uitrasonic Treatment of Fuel Oil (연료유의 초음파 처리에 의한 디젤기관의 성능향상에 관한 연구)

  • 양정규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.191-196
    • /
    • 1992
  • This paper is an experimental study to investigate utility of ultrasonic treatment of fuel oil in diesel engine. Experiment was carrid out to clarify the effect of ultrsonic vibration on the characteristics of maximum pressure, fuel consumption ratio, smoke, BMEP and torque. The result obtained are as follows: 1. In the case of given ultrsonic vibration, the maximum pressure is increased in all experimental conditions. 2. In the case of given ultrsonic vibration, the decrease effect of fuel consumption rate is increased at low rpm. 3. The generation quantity of soots is increased according to load. In the case of given ultrsonic vibration, the decreased quantity of soots does not very according to load. 4. In the case of given ultrsonic vibration, the BMEP and torque are increased at low load.

  • PDF

A Study on Boost/Flux-Weakening Controller for Wide Speed Operation Range having Engine and IPMSG for Special Equipment Vehicle (특수차량용 엔진 직결형 IPMSG의 넓은 속도운전 범위를 위한 부스트/약자속 제어기에 관한 연구)

  • Lee, Sang-Geon;Kim, Sung-An;Cho, Yun-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.54-61
    • /
    • 2014
  • This paper proposes a boost/flux-weakening controller (BFWC) for wide speed operation range having engine and interior permanent magnet synchronous generator (IPMSG) for special equipment vehicle. The proposed BFWC exploits direct torque/flux control (DTFC) scheme based on space vector modulation method to control the constant DC voltage output within the entire speed operation range of engine. And, to improve the response characteristics of maximum torque per ampere (MTPA) operation and flux-weakening operation, the MTPA and flux-weakening feed-forward controllers are applied. To estimate feasibility and usefulness of the proposed controller, the simulation and experimental results are compared.

Evaluation of Combustion Stability of Idling Speed State (LBT연소를 통한 Idling 운전시의 연소안정성 평가)

  • 이중순;이종승;김진영;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.66-72
    • /
    • 1999
  • It is necessary to discuss lightening engine parts and reducing the friction of sliding parts to improve fuel consumption and combustion stability at idling condition. Lean best torque combustion which produce maximum power at a lean air-fuel ratio is effective for the reduction of exhaust gas emission and the improvement of fuel consumption. Accordingly, this study deals with the expansion of lean combustible limitation, the combustion stability and the reduction of idle speed through the analysis of combustion characteristics on the base of the control technique of precise air-fuel ratio because it does not need to maximum power at idling condition. The idle speed is increased proportional to ISC(Idle Speed Control) duty ratio. On the other hand the idle speed decreased by lean air-fuel ratio. The COV in engine speed is stable within maximum two percent up to 17.6 mixture ratio by the control of ISC duty ratio.

  • PDF

Strength Evaluation for Crankshaft and its Oil Hole of Medium Speed Diesel Engine (중형 디젤 엔진 크랭크축 및 오일 홀에 대한 강도평가)

  • An, Sung-Chan;Son, Jong-Ho;Kim, Byung-Joo;Kim, Jong-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1121-1126
    • /
    • 2003
  • Strength evaluation was carried out for the fillet and oil hole of crankshaft of medium speed diesel HiMSEN engine to verify initial concept design. Alternating torque obtained from torsional vibration analysis and radial force due to firing pressure were applied. It was assumed that the maximum alternating torque and radial force occur simultaneously. Weak points in view of fatigue are proceeding fillet and crank pin fillet area and the minimum normalized fatigue safety factor is 1.17 at crank pin fillet. The fatigue strength of the oil hole was evaluated to verify the effect of the surface roughness of the oil hole. As results, the specific level of the inner surface roughness and the polishing depth of the oil hole for sufficient fatigue strength was suggested. The maximum stress value and stress distribution at the inner surface of the oil hole can be easily estimated at initial design stage by the newly developed method.

  • PDF

The Influence of Operating Conditions on Fuel Economy of the Hybrid Electric Vehicle (운전조건이 하이브리드 자동차의 연비에 미치는 영향 연구)

  • Lee Youngjae;Kim Gangchul;Pyo Youngdug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.35-40
    • /
    • 2005
  • In the present study, the influence of operating conditions on fuel economy for hybrid electric vehicle was analyzed. In order to accomplish this, vehicle speed, engine speed, battery current and voltage, SOC (state of charge),motor speed and torque, generator speed and torque, engine coolant temperature etc. were measured in real time. The tests were carried out under different driving cycles which are urban and highway cycles, KOREA CITY cycle and on-road driving, and also under various operating conditions such as different initial SOC, with or without regenerative braking etc.. Generally, conventional gasoline engines show a poor fuel economy at stop and go driving, because braking energy is wasted and the engine is operated in low thermal efficiency regions. However, in case of hybrid vehicles, higher fuel economy can be obtained because of utilizing the maximum thermal efficiency regions of engine, idling stop of engine, and regenerative braking etc..

Performance of 26cc Small Sized Two-Stroke SI Engines on Excess air factor at partial opened carburetor throttle (저개도 카뷰레터 쓰로틀에서의 26cc 소형원동기의 공기과잉율에 따른 성능특성)

  • Choi, Young-Ha;Kim, Byeong-Guk;Choi, Hyung-Mun;Yoon, Suck-Ju;Kim, Dong-Sun;Han, Jong-Kyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.409-412
    • /
    • 2008
  • This paper presents the effects of excess air factors(0.84${\sim}$0.90) and opened throttle area ratios(AR=0.15${\sim}$0.25) on the emission and performance of a small spark-ignition gasoline engine. The engine used in this paper was a single cylinder, diaphragm carburetor, two-stroke, air-cooled 26cc engine for brush cutter. The rpm, torque, fuel consumption and CO emission were measured under the four different excess air factors and three different opened area ratios conditions on the engine loads respectively. The results showed that the rpm was decreased and torque was increased at increasing load, the maximum power and minimum fuel consumption could be obtained critical rpm on each throttle opened area ratios and brake specific fuel consumption was decreased 13${\sim}$17%, CO emissions was decreased 21${\sim}$38% at excess air factor 0.90 than 0.84.

  • PDF