• 제목/요약/키워드: maximum engine torque

검색결과 91건 처리시간 0.024초

가변익 프로펠러를 갖는 추진축계의 비틀림진동에 관한 연구 (A Study on the Torsional Vibration of propulsion Shafting System with Controllable Pitch Propeller)

  • 이돈출
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.626-634
    • /
    • 1998
  • Controllable pitch propeller(CPP) is usually adopted for easy and effective engine controls of a ship in a port. Unfortunately the torsional vibration may occur by a certain variation of engine torque and the major resonance peak may exist within the maximum continuous rating(MCR) In these cases an additional stress concentration on the oil passages such as longitudinal slots notches and circular holes of an oil distributor shaft(ODS) occurs by the torsional vibration of the CPP shaft. In this paper an analysis for the fatigue limit of an ODS system of the 5S70MC engine in a crude oil carrier is done by applying FEM and empirical formulas. Furthermore the additional stress on the ODS is investigated by analyzing the torsional vibration of the shaft system and a control method in which a tuning damper is adopted is introduced in the case of the additional stress exceeds the fatigue limit. The validity of analysis method is verified by comparing the results acquired by an actual measurement of the vibratory torque for the above ODS

  • PDF

출력분기 기반 플러그인 하이브리드 전기자동차의 동력전달 시스템 특성 분석 (Analysis of Powertrain Characteristics for Output Split Type Plug-in Hybrid Electric Vehicle)

  • 김정민
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.112-121
    • /
    • 2015
  • In this paper, powertrain of output split type plug-in hybrid electric vehicle is analyzed for the operation range of speed, torque, and power. First, it is assumed that the efficiency of motor is 100%. And, the speed and torque equations are derived based on the lever analogy. With the above equations, the simulations are performed for the powertrain of output split type plug-in hybrid electric vehicle. From the simulation results, it is found that the output torques of EV1 and series modes are larger than the EV2 and power split modes' ones. It means the EV1 and series modes can be used for the rapid acceleration. But the EV1 and series modes can be used only the velocity of under the 120 km/h. It is because the motor reaches its maximum speed when the velocity is over the 120 km/h for the EV1 and series modes. When the engine is turned on, the engine power is transmitted through the two motors. But, the power split mode shows the power split of engine at the output shaft, and it has the point of zero motor power. Thus, the transmission efficiency of the power split mode can be higher than the series mode's one, it the motor efficiency is considered.

The Effect of Water Emulsified Fuel on a Motorway-Bus Diesel Engine

  • Park, Kweonha;Kwak, Inseok;Oh, Seungmook
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2049-2057
    • /
    • 2004
  • In this study, the combustion characteristics and durability of a diesel engine using emulsified fuel was investigated. Water was used in oil type emulsified fuel. In order to understand the effect of emulsified fuel in a wide range of engine running conditions, D-13 mode was selected as a test condition, and a durability test was included to understand the long-term effect of water. Combustion pressure in a cylinder, exhaust emissions, specific fuel consumption, sound level and maximum torque were measured. NOx and PM were simultaneously reduced and the specific fuel consumption was increased and decreased at low and high loads, respectively. There was no trouble and any damage on the parts of the cylinder during a 500 hour durability test.

선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구 (A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine)

  • 이돈출;박성현;강대선;김태언
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.66-72
    • /
    • 2006
  • Marine diesel engine production and refinements sought a continuous increase on mean effective pressure and thermal efficiency. These results in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. As such, crankshaft should be designed and compacted within its fatigue strength. In this paper, the 8H25/33P($3,155ps{\times}900rpm$) engine for ship propulsion was selected as a case study, and tile strength analysis of its crankshaft is carried out by. simplified method recommended by IACS M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are compared with each other.

  • PDF

시뮬레이터를 이용한 중형 저상버스의 주행성능 예측 (Driving Performance Prediction for Low-floor Midsize bus Using Simulator)

  • 김기수;김진성;박영일;이치범
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.541-547
    • /
    • 2015
  • In this study, the performance of a low-floor midsize bus under development is predicted through simulations. To predict the vehicle's acceleration, maximum speed, and uphill driving performance, a forward simulator which calculates the vehicle power is developed. Also we verify the forward simulator by comparing simulations and test result for benchmarking vehicle. To predict the fuel consumption, we use a backward simulator for a specified road cycle. However, to predict the fuel consumption using the backward simulation the engine fuel-consumption map is needed. The engine fuel-consumption map extracting data from a similar sized diesel engine is used by re-scaling the maximum torque. As a result, we simulate the vehicle's forward performance with a new engine. Further, we simulated the backward performance to optimize the fuel efficiency and gearshift timing.

400cc급 EFI 소형엔진의 성능개발 (Performance Development of the 400cc EFI Small Engine)

  • 박성영
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1547-1551
    • /
    • 2011
  • 기화기 방식의 엔진을 EFI 소형 엔진으로 설계 변경하여 제작하였다. 최적의 작동 조건을 선정하기위하여 엔진의 성능개발을 수행하였다. EFI 엔진의 최대 출력 및 최대 토크는 12.56Ps 및 25.4Nm로 기화기 엔진과 동등한 수준이다. EFI 소형엔진의 연료 소모율은 기화기 방식 엔진 대비 평균 17% 향상되었다. KG2-6모드 실험을 통한 HC+NOx는 7.46g/kWh로 측정되어, EPA Phase 3 규제를 만족하였다. THC는 기화기식 엔진 대비 평균 41% 저감되었으나, 열효율의 상승으로 인하여 NOx는 평균 3.5배 증가하였다.

전동스쿠터의 필요 동력 용량 계산 (An Estimation of power capacity for electric motor scooter)

  • 김문환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.847-849
    • /
    • 2009
  • 무릇 모든 상업용 자동차의 설계에 있어 자동차 성능과 그 한계치를 미리 안다는 것은 중요한 일이다. 자동차의 성능이 결정되어야 필요한 동력기관인 전동기의 전력, 배터리 사양, 자동차의 무게 등을 설계, 결정할 수 있다. 본 논문에서는 전동스쿠터의 정격설계에 필요한 사양을 계산하기위하여 필요한 스쿠터의 운동방정식과 힘에 대하여 검토한다. 그리고 미리 주어진 제원 값에 따라 운동방정식에서 전동기설계에 필요한 파라미터 값을 얻는다. 전력소비특성, 정속운전에 필요한 전력범위, 정속 주행시 최대주행거리 등의 시뮬레이션 결과, 전동기 치수와 성능설계에 필요한 주요 파라미터인 전류 값의 한계치를 추정할 수 있게 되었다.

  • PDF

소형 트럭용 CNG/가솔린 겸용 엔진 개발과 성능 분석 (Development of CNG/Gasoline Bi-fuel engine for a small truck and the evaluation of engine performance)

  • 권오운;김재수;박용국;김성준
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.21-28
    • /
    • 2006
  • A diesel truck of 1 ton is re-powered by a gasoline engine and the fuelling system of gasoline engine modified to gasoline/CNG bi fuel system. The engine characteristics such as fuel economy and power are evaluated by driving rest, sloping test and dynamometer. The driving test prove the driving cost is saved by 55% and the maximum speed is raised by 13%, which is mainly due to the higher calorific value of CNG. The sloping test is done on the road of which slope is 15%. The truck shows the mean velocity of 88km/h, which means that a re-powered truck is working fine. The BHP are measured by dynamometer. The power and torque produced by a re-powered truck are reduced by 13% and 14% respectively from the power of gasoline engine. The BHP reduction is one of main problems which one has to solve in near future.

  • PDF

SEV용 IPMSM의 토크리플 및 철손 저감을 위한 회전자 형상 설계에 관한 연구 (A Study on Rotor Shape Design to Reduce Torque Ripple and Core Loss of IPMSM for SEV)

  • 강정인;정태욱
    • 한국산업융합학회 논문집
    • /
    • 제26권2_2호
    • /
    • pp.327-332
    • /
    • 2023
  • As interest in eco-friendly and fuel-efficient electric vehicles has increased globally, there has also been a growing interest in the efficiency, vibration, and noise of motors for electric vehicles Electric vehicles generally have significantly lower driving ranges per charge compared to the maximum driving range per fueling of internal combustion engine vehicles. Additionally, there are issues with various vibrations and noise generated by the motor that can cause discomfort for passengers. Therefore, research is necessary to reduce losses, vibration, and noise of the motor to improve the driving range of electric vehicles. IPMSM with a purchased design can obtain additional reluctance torque by utilizing the difference in inductance between the d and q axes. However, due to this reluctance torque, torque ripple occurs larger than other motors. The increase in torque ripple also increases noise and vibration. Since the reluctance torque, which is the main cause of torque ripple, is determined by the shape of the motor components, torque ripple can be reduced through shape optimization. In this paper, a rotor shape for reducing torque ripple and core loss that causes vibration, noise, and efficiency to decrease of IPMSM for electric vehicles was proposed. Optimization design was carried out by changing the shape of the q-axis path of the rotor to reduce the difference in inductance of the d and q-axis of the rotor. Finally, in order to verify the validity of the design variables derived through the optimal design, the original model and the improved model were compared through the FEM. Compared to the original model, the improved model's torque verifying ripple was reduced by about 62% and core loss was reduced by about 29%, the superiority of the improved model.

V-벨트 무단변속기(無斷變速機)를 이용(利用)한 자탈형(自脫型) 콤바인의 주행속도(走行速度) 제어(制御)(I) (A Forward Speed Control of Head-feed Combine Using Continuously Variable V-belt Transmission -Combine Load Characteristics-)

  • 최규홍;유관희;조영길;박판규
    • Journal of Biosystems Engineering
    • /
    • 제16권2호
    • /
    • pp.124-132
    • /
    • 1991
  • This study was carried out to obtain the information needed in the development of forward speed control system and the improvement of combine performance. The effects of variety, grain moisture content and forward speed on the combine load characteristics were investigated through experiments. The results of this study are summarized as follows. 1. A data acquisition system was developed to measure the engine speed and the torques and speeds of the threshing cylinder, dean-grain auger and tailings-return auger. The system consisted of transducers, signal conditioner, interface board and microcomputer. The system accuracy is better than ${\pm}2.3%$ full scale. 2. Linear regression equations were obtained for the torque, speed and power requirement of threshing cylinder for different paddy varieties, grain moisture contents and feed rates. 3. The maximum value of relative frequency for threshing cylinder torque decreased as the increase in feed rate and moisture content. The range of torque fluctuation was 1.2~3.7 and 1.2~1.9 times the average and maximum torque, respectively. The maximum value of power spectrum density (PSD) appeared to be about 11 Hz regardless of paddy variety, grain moisture content and feed rate. 4. The speed of tailings return thrower decreased rapidly at below 900rpm, and it fell to near zero about 3 seconds after that time. When the travelling of combine harvester was stopped immediately after sensing the overload, it took about 7 seconds for a full recovery of the no-load speed of tailings return thrower.

  • PDF