• Title/Summary/Keyword: maximum engine torque

Search Result 91, Processing Time 0.021 seconds

A Study on Steady-State Performance Analysis and Dynamic Simulation for Medium Scale Civil Aircraft Turbofan Engine (I) (중형항공기용 터보팬엔진의 정상상태 성능해석 및 동적모사에 관한 연구 (I))

  • 공창덕;고광웅;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.47-55
    • /
    • 1998
  • Steady-state and transient performance for the medium scale civil aircraft turbofan engine was analyzed. Steady-state performance was analyzed on maximum take-off condition, maximum climb condition, and cruise condition. At 90%RPM of the low pressure compressor, the partload performance was economized. The transient performance was analyzed with cases of the step increase, the ramp increase, the ramp decrease, and the step increase and ramp decrease for the input fuel flow. For the transient performance analysis, work matching between compressor and turbine was needed. Modified Euler method was used the integration of residual torque in work matching equation. At all flight condition, the overshoot of the high pressure turbine inlet temperature was appeared in the step and ramp increase case, and the surge of high pressure compressor was appeared in the step increase case and the ramp increase case within 5.5 seconds of maximum climb condition.

  • PDF

Development of Regenerative Braking Control Algorithm for a 4WD Hybrid Electric Vehicle (4WD HEV의 회생제동 제어로직 개발)

  • Yeo Hoon;Kim Donghyun;Kim Talchol;Kim Chulsoo;Hwang Sungho;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.38-47
    • /
    • 2005
  • In this paper, a regenerative braking algorithm is proposed to make the maximum use of the regenerative braking energy for an independent front and rear motor drive parallel HEV. In the regenerative braking algorithm, the regenerative torque is determined by considering the motor capacity, motor efficiency, battery SOC, gear ratio, clutch state, engine speed and vehicle velocity. To implement the regenerative braking algorithm, HEV powertrain models including the internal combustion engine, electric motor, battery, manual transmission and the regenerative braking system are developed using MATLAB, and the regenerative braking performance is investigated by the simulator. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC, which recuperates 60 percent of the total braking energy while satisfying the design specification of the control logic. In addition, a control algorithm which limits the regenerative braking is suggested by considering the battery power capacity and dynamic response characteristics of the hydraulic control module.

Optimal Design of New Magnetorheological Mount for Diesel Engines of Ships (선박용 디젤엔진을 위한 새로운 MR 마운트의 최적설계)

  • Do, Xuan-Phu;Park, Joon-Hee;Woo, Jae-Kwan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents an optimal design of a magnetorheological(MR) fluid-based mount(MR mount) that can be used for to vibration control in diesel engines of ships. In this work, a mount that uses mixed-modes(squeeze mode, flow mode, and shear mode) is proposed and designed. To determine the actuating damping force of the MR mount required for efficient vibration control, the excitation force from a diesel engine is analyzed. In this analysis, a model of a V-type engine is considered. The relationship between the velocity and pressure of gas in terms of the torque acting on the piston is derived. Subsequently, by integrating the field-dependent rheological properties of commercially available MR fluid with the excitation force, the appropriate size of the MR mount is designed. In addition, to achieve the maximum actuating force under geometric constraints, design optimization is undertaken using the ANSYS parametric design language software. Through magnetic density analysis, optimal design parameters such as the bottom gap and radius of coil are determined.

Effects of Bio-diesel blending rate on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with EGR rate (커먼레일식 디젤기관의 EGR율과 바이오디젤 혼합율에 따른 연소 및 배기 특성)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this study is to investigate the specific characteristics of combustion and exhaust emissions on a 4-cylinder common rail diesel engine as EGR rate and the rate of blended bio-diesel was altered. Bio-diesel fuel which is a sort of alternative fuels can be adapted to diesel engine directly without modifying. This study was performed to 2000rpm of engine speed with torque 30Nm while EGR rate and the rate of blended bio-diesel was changed. Decreasing combustion pressure and increasing the rate of heat were occurred when we had changed the EGR rate on the 20% of bio-diesel blended diesel fuel. The maximum pressure of combustion and the IMEP became higher as the EGR rate and the rate of blended bio-diesel were changed. Exhaust gas temperature was increased the higher rate of the blended bio-diesel under the fixed EGR rate. However, it went down as the EGR rate increased. The amounts of CO and Soot were reduced with increasing the rate of the blended bio-diesel without changing EGR rate and raised with increasing of the EGR rate. On the fixed EGR rate, NOx was increased along with growing the rate of the bio-diesel. On the other hand, it was decreased while EGR rate were going up.

A Study on Tuning Effects of Intake Manifold, Intake Pipe and Air Filter upon Performance and Exhaust Emissions of Driving Car (운행자동차 성능 및 배기 배출물에 미치는 흡기 다기관, 흡기 파이프 및 공기필터의 튜닝효과에 관한 연구)

  • Bae, Myung-whan;Ku, Young Jin;Park, Hui-seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.538-548
    • /
    • 2016
  • The purpose of this study is to identify the possibility of effective tuning works, understand the characteristics of tuning engine, and analyse the basic data of engine tuning inspection corresponding to the safe operation and environment of a driving gasoline car. The effects of tuning on the characteristics of performance and exhaust emissions under a wide range of engine speeds are experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating at four types of non-tuning, tuning 1, 2 and 3. The tuning parts in the gasoline engine are the intake manifold, intake pipe and air filter. In the experiment, the output, torque and air-fuel ratio of the five-speed automatic transmission vehicles were measured at the chassis dynamometer(Dynojet 224xLC) with one person on board. The exhaust emissions of $NO_X$, THC, CO, $O_2$ and $CO_2$, and excess air ratio(${\lambda}$) at the other chassis dynamometer(DASAN-MD-ASM-97-KR-HD) were also measured by the idle/constant-speed mode(ASM2525 mode) test method. It is found that the actual air-fuel ratios of non-tuning and tuning engines were shown to be lower than the stoichiometric air-fuel ratio with increasing engine speed, and the actual air-fuel ratio of non-tuning engine was slightly higher than those of tuning engines when the engine speed is more than 4000 rpm. The output was significantly increased by the tuning whereby the maximum output of tuning engine was more increased to approximately 117.64% than that of non-tuning engine. In addition, CO, THC and $NO_X$ emissions of non-tuning and tuning engines measured by the constant-speed test mode were all satisfied with the inspection standards. CO emission was increased, while THC and $NO_X$ emissions were reduced by tuning.

Pin-Boss Bearing Lubrication Analysis of a Diesel Engine Piston Receiving High Combustion Pressure (고 연소압을 받는 디젤엔진 피스톤의 핀-보스 베어링 윤활해석)

  • Chun, Sang-Myung;Ha, Dae-Hong
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated the effects on the film pressure distribution due to the change in maximum combustion pressure.

An Experimental Study on the Performance Characteristics of a Hydrogen Fueled LPi Engine (LPi기관에서 수소첨가에 따른 성능특성에 관한 실험적연구)

  • Choi, Gyeung Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • 환경문제와 석유자원의 고갈이 많은 연구자들을 기존 탄화수소연료를 대체할수 있는 재생 가능한 연료를 구하는데 많은 노력을 기울이고 있다. 수소연료는 유해배기물질이 없는 연소와 또한 연소후에 재생 가능한 물성분만 배출하는 속성으로 미래의 청정에너지로 각광을 받고 있다. 이러한 이유로 수소연료는 수송기계의 연료로도 주목을 받고 있다. 따라서 수소연료기관 개발은 21세기에도 지속적으로 진행될 것이다. 이에대한 초기연구로 기체 LPG 연료가 아닌 액체 LPG 연료를 흡기관에 분사하여 기화된 LPG 연료를 엔진으로 흡입하는 LPi엔진에 수소연료를 과급하여 엔진에 성능을 연구하고자 하였다.

Analysis of Driving Performance for the Passenger Car Equipped with an Electronically Controlled Automatic Transaxle (전자제어식 자동변속기 장착 승용차의 구동성능 해석)

  • Kim, S.I.;Lim, W.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.73-81
    • /
    • 2002
  • In this study, electronically controlled automatic transmission adopted on a subcompact model in the market was modelled, and the driving performances of the transmission were simulated with the models. Kinetic and dynamic models of working components are established. The driving simulation program is developed with those models, and the various driving conditions are analyzed. With the results, the dynamic behaviour of the engine and the automatic transmission is easily understood. Especially, the transient performances of torque converter and clutches are deeply analyzed. Skipping the vehicle road test by using this analyzing tool, we can expect the cost down and the reduction of the development period of automatic transmission.

  • PDF

Tillage Characteristics of the Single-Edged Rotary Blade (단면형 로터리경운날의 경운 특성)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF

A Study on the Structural Stability and Effectiveness of Rope Cutter for Ship's Propeller (선박추진기용 로프절단장치의 구조 안정성 및 효용성에 관한 연구)

  • Kim, Jun-Soo;Seul, Youngyoon;Lee, Du-Yong;Park, Kitae;Kim, Tae Hun;Choi, Jae-Hyuk;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.550-556
    • /
    • 2021
  • The scissor-type rope cutter is the most widely used amongst all kinds of commercially available rope cutters in Korea. In this study, we performed finite element analysis on the scissor-type rope cutter. We determined the structure of the cutter that would ensure its stable operation in various situations involving rope entanglement, and verified its effectiveness by testing it in the lab and in an actual ship. These investigations revealed that when the propeller shaft was not rotated by rope entanglement, the constant torque generated by the engine resulted in the torsion of the rope cutter and maximum deformation in the lower blade, which was not restricted by finite element analysis. With increasing blade thickness, the maximum values of deformation and equivalent stress decreased, resulting in a rise in the safety factor. At the constant blade thickness, the effect of the torque variations on the maximum equivalent stress and the maximum deformation is independent of the position of the external force of the rope cutter and decreases in direct proportion. The results of this study confirmed that the rope-cutter structure determined by analysis could lead to a hassle-free removal of ropes and fishing nets under all conditions and environments.