Kim, Hyeong-Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
Earthquakes and Structures
/
v.3
no.1
/
pp.59-81
/
2012
A ductility inverse-mapping method for SDOF systems including passive dampers is proposed which enables one to find the maximum acceleration of ground motion for the prescribed maximum response deformation. In the conventional capacity spectrum method, the maximum response deformation is computed through iterative procedures for the prescribed maximum acceleration of ground motion. This is because the equivalent linear model for response evaluation is described in terms of unknown maximum deformation. While successive calculations are needed, no numerically unstable iterative procedure is required in the proposed method. This ductility inverse-mapping method is applied to an SDOF model of bilinear hysteresis. The SDOF models without and with passive dampers (viscous, viscoelastic and hysteretic dampers) are taken into account to investigate the effectiveness of passive dampers for seismic retrofitting of building structures. Since the maximum response deformation is the principal parameter and specified sequentially, the proposed ductility inverse-mapping method is suitable for the implementation of the performance-based design.
Seismic design of reinforced concrete (RC) structures requires a certain minimum level of flexural ductility. For example, Eurocode EN1998-1 directly specifies a minimum flexural ductility for RC beams, while Chinese code GB50011 limits the equivalent rectangular stress block depth ratio at peak resisting moment to achieve a certain nominal minimum flexural ductility indirectly. Although confinement is effective in improving the ductility of RC beams, most design codes do not provide any guidelines due to the lack of a suitable theory. In this study, the confinement for desirable flexural ductility performance of both normal- and high-strength concrete beams is evaluated based on a rigorous full-range moment-curvature analysis. An effective strategy is proposed for flexural ductility design of RC beams taking into account confinement. The key parameters considered include the maximum difference of tension and compression reinforcement ratios, and maximum neutral axis depth ratio at peak resisting moment. Empirical formulae and tables are then developed to provide guidelines accordingly.
In the design of concrete columns, it is important to provide some nominal flexural ductility even for structures not subjected to earthquake attack. Currently, the nominal flexural ductility is provided by imposing empirical deemed-to-satisfy rules, which limit the minimum size and maximum spacing of the confining reinforcement. However, these existing empirical rules have the major shortcoming that the actual level of flexural ductility provided is not consistent, being generally lower at higher concrete strength or higher axial load level. Hence, for high-strength concrete columns subjected to high axial loads, these existing rules are unsafe. Herein, the combined effects of concrete strength, axial load level, confining pressure and longitudinal steel ratio on the flexural ductility are evaluated using nonlinear moment-curvature analysis. Based on the numerical results, a new design method that provides a consistent level of nominal flexural ductility by imposing an upper limit to the axial load level or a lower limit to the confining pressure is developed. Lastly, two formulas and one design chart for direct evaluation of the maximum axial load level and minimum confining pressure are produced.
Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.
The stress-strain relationship of concrete in flexure is one of the essential parameters in assessing the flexural strength and ductility of reinforced concrete (RC) columns. An overview of previous research studies revealed that the presence of strain gradient would affect the maximum concrete stress developed in flexure. However, no quantitative model was available to evaluate the strain gradient effect on concrete under flexure. Previously, the authors have conducted experimental studies to investigate the strain gradient effect on maximum concrete stress and respective strain and developed two strain-gradient-dependent factors k3 and ko for modifying the flexural concrete stress-strain curve. As a continued study, the authors herein will extend the investigation of strain gradient effects on flexural strength and ductility of RC columns to concrete strength up to 100 MPa by employing the strain-gradient-dependent concrete stress-strain curve using nonlinear moment-curvature analysis. It was evident from the results that both the flexural strength and ductility of RC columns are improved under strain gradient effect. Lastly, for practical engineering design purpose, a new equivalent rectangular concrete stress block incorporating the combined effects of strain gradient and concrete strength was proposed and validated. Design formulas and charts have also been presented for flexural strength and ductility of RC columns.
Experimental and numerical studies were done to investigate seismic performance of slender shear walls with no boundary confinement that are principal structural members of high0rise bearing wall buildings. 1/3 scale specimens that model the plastic region of long slender shear walls subjected to combined axial load and bending moment were tested to investigate strength, ductility, capacity of energy dissipation, and strain distribution, The experimental results show that the slender shear walls fail due to early crushing in the compressive boundary, and then have very low ductility. The measured maximum compressive strain is 0.0021, much less than 0.004 being commonly used for estimation of ductility. This result indicates that the maximum compressive strain is not a fixed value but is affected by moment gradient along the shear wall height and distance from the neutral axis to the extreme compressive fiber.
The effect of transformation temperature on microstructural features and their effects on ductility in 0.55%C steels were investigated, compared with in 0.82%C eutectoid steel. The samples were austenitized at 100$0^{\circ}C$ for 30min. followed by quenching in a salt bath in the temperature range of 500 ~ $620^{\circ}C$. It was found that reduction of area(RA) increased with increasing transformation temperature and then, decreased after reaching its maximum value in steels containing pro-eutectoid ferrite less than 6%. The thickness of lamellar cementite was found to be the main factor controlling RA. Additionally, the presence of cementite thickness for the maximum ductility in all the tested steels was observed as about 0.015${\mu}{\textrm}{m}$ for tested steels.
Proceedings of the Korea Concrete Institute Conference
/
1998.04b
/
pp.547-552
/
1998
Lateral pressure by circular reinforcement greatly enhances the maximum strength and ductility of spiral columns. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at that point of spiral concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at that point was proposed. It is based on calculation of lateral confinement pressure generated by circular reinforcement, and the resulting improvements in strength and ductility of confined concrete.
Proceedings of the Korea Concrete Institute Conference
/
1998.10b
/
pp.609-614
/
1998
Lateral pressure by tied reinforcement greatly enhances the maximum strength and ductility of columns under concentric loading. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at the point of tied high-strength concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at the point was proposed. It is based on calculation of lateral confinement pressure generate from tensile that develop in transverse reinforcement.
The effect of microstructural features on ductility of cold drawn pearlitic steels containing 0.52 ~ 0.92 wt%C was investigated. During wire drawing, reduction of area (Rh) increased initially with the progressive realignment of randomly oriented cementite, showed a maximum peak due to the completion of the alignment of most cementite, and decreased with thinning or fragmentation of the aligned cementite. Among factors on ductility, cementite thickness was found to be the most dominant microstructural feature for Rh of drawn pearlitic wires, regardless of transformation temperature and carbon content in steels.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.