• Title/Summary/Keyword: maximum depth of snowfall

Search Result 18, Processing Time 0.027 seconds

A Study on the Evaluation of Probable Snowfall Depth in Korea (우리나라의 확률적설량 산정에 관한 연구)

  • Lee, Jae-Joon;Jung, Young-Hoon;Lee, Sang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.53-63
    • /
    • 2007
  • This study is to evaluate the probable snowfall depth by the point frequency analysis and to draw the map of probable snowfall depth in Korea. The 14 probability distributions which has been widely used in hydrologic frequency analysis are applied to the annual maximum depth of snowfall data. The parameters of each probability distribution are estimated by method of moments, maximum likelihood method and method of probability weighted moments. The estimated parameters were checked by parameter validity conditions of each assumed probability distribution. Four tests that are $X^2-test$, Kolmogorov-Smirnov test, Cramer von Mises test and probability plot correlation coefficient test are used in this study to determine the goodness of fit of the distributions. Mostly the 2-parameter gamma distribution was determined as appropriate distribution for the annual maximum new snowfall depth. The probable snowfall depth were obtained from appropriate distribution for the selected return periods and the maps of probable snowfall depth were presented. It will be useful to specify the snowfall load for the design of agricultural facilities such as vinyl house and cattle shed.

Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters (풍수해 대응을 위한 Bootstrap방법과 SIR알고리즘 빈도해석 적용)

  • Kim, Yonsoo;Kim, Taegyun;Kim, Hung Soo;Noh, Huisung;Jang, Daewon
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2018
  • The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results of frequency based snowfall depth show that most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. According to the results, observed data and Bootstrap method showed a difference of -19.2% to 3.9%, and the Bootstrap method and SIR(Sampling Importance Resampling) algorithm showed a difference of -7.7 to 137.8%. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics.

Projection of Future Snowfall and Assessment of Heavy Snowfall Vulnerable Area Using RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 미래 강설량 예측 및 폭설 취약지역 평가)

  • Ahn, So Ra;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.545-556
    • /
    • 2015
  • This study is to project the future snowfall and to assess heavy snowfall vulnerable area in South Korea using ground measured snowfall data and RCP climate change scenarios. To identify the present spatio-temporal heavy snowfall distribution pattern of South Korea, the 40 years (1971~2010) snowfall data from 92 weather stations were used. The heavy snowfall days above 20 cm and areas has increased especially since 2000. The future snowfall was projected by HadGEM3-RA RCP 4.5 and 8.5 scenarios using the bias-corrected temperature and snow-water equivalent precipitation of each weather station. The maximum snowfall in baseline period (1984~2013) was 122 cm and the future maximum snow depth was projected 186.1 cm, 172.5 mm and 172.5 cm in 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2099) for RCP 4.5 scenario, and 254.4 cm, 161.6 cm and 194.8 cm for RCP 8.5 scenario respectively. To analyze the future heavy snowfall vulnerable area, the present snow load design criteria for greenhouse (cm), cattleshed ($kg/m^2$), and building structure ($kN/m^2$) of each administrative district was applied. The 3 facilities located in present heavy snowfall areas were about two times vulnerable in the future and the areas were also extended.

A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021 (2021년 3월 1-2일 영동지역 강설 사례 연구)

  • Bo-Yeong Ahn;Byunghwan Lim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.119-134
    • /
    • 2023
  • The synoptic, thermodynamic, and dynamic characteristics of a snowfall event that occurred in the Yeongdong region on March 1-2, 2021, were investigated. Surface weather charts, ERA5 reanalysis data, rawinsonde data, GK-2A satellite data, and WISSDOM data were used for analysis. The snow depth, exceeding 10 cm, was observed at four weather stations during the analysis period. The maximum snow depth (37.4 cm) occurred at Bukgangneung. According to the analysis of the weather charts, old and dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to developing convective clouds and snowfall over Bukgangneung. In particular, based on the thermodynamic and kinematic vertical analysis, we suggest that strong winds attributable to the vertical gradient of potential temperature in the low layer and the development of convective instability due to cold advection played a significant role in the occurrence of snowfall in the Yeongdong region. These results were confirmed from the vertical analysis of the rawinsonde data.

Estimation of Frequency Based Snowfall Depth and Maximum Snowfall Depth in 2010, Korea (한반도 확률적설량 산정과 2010년 최심신적설량 빈도해석)

  • Kim, Yon-Soo;Park, Moo-Jong;Kim, Soo-Jun;Moon, Ki-Ho;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1476-1480
    • /
    • 2010
  • 최근에 한반도에 발생한 강설은 국민생활의 교통장애와 같은 생활의 불편함뿐만 아니라 농축산업의 광범위한 피해를 발생시키고 있다. 이번 2010년 1월 서울에는 40년만에 최대 적설량을 기록하였고 교통 및 도시 기능이 마비되는 등의 피해가 발생하였다. 본 연구에서는 기상청 산하 61개 지점 최심신적설량을 이용하였으며, 최근 적설량의 확률빈도규모를 고려하여 빈도별 확률적설량을 산정하고 확률적설량도를 작성하였다. 확률분포형은 확률가중모멘트법(PWM)을 이용하였고 적정분포형으로는 Gamma 2변수를 선정하였으며, 과거 적설량 자료를 검토한바 2004년, 2005년의 최심신적설량 극값은 평균 300년 빈도, 이번 2010년 1월 서울은 약 200년, 인천, 수원, 이천은 약 50년, 춘천은 약 30년 빈도인 것으로 분석되었다. 이러한 연구 결과는 적설량에 따른 방재 기준의 개선방안 및 재설정 방향 제시에 기초자료로 활용될 수 있을 것이다.

  • PDF

An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae (기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정)

  • Jo, Ji-yeong;Lee, Seung-Jae;Choi, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • To prevent and mitigate damage to farms due to heavy snowfall, snow weight information should be provided in addition to snow depth. This study reviews four formulae regarding snow density and weight used in extant studies and applies them in Suwon area to estimate snow weight in Korea. We investigated the observed snow depth of 94 meteorological stations and automatic weather stations (AWS) data over the past 30 years (1988-2017). Based on the spatial distribution of snow depth by area in Korea, much of the fresh snow cover, due to heavy snowfall, occurred in Jeollabuk-do and Gangwon-do. Record snowfalls occurred in Gyeongsangbuk-do and Gangwon-do. However, the most recent heavy snowfall in winter occurred in Gyeonggi-do, Gyeongsangbuk-do, and Jeollanam-do. This implies that even if the snow depth is high, there is no significant damage unless the snow weight is high. The estimation of snow weight in Suwon area yielded different results based on the calculation method of snow density. In general, high snow depth is associated with heavy snow weight. However, maximum snow weight and maximum snow depth do not necessarily occur on the same day. The result of this study can be utilized to estimate the snow weight at other locations in Korea and to carry out snow weight prediction based on a numerical model. Snow weight information is expected to aid in establishing standards for greenhouse design and to reduce the economic losses incurred by farms.

Development of Snow Depth Frequency Analysis Model Based on A Generalized Mixture Distribution with Threshold (최심신적설량 빈도분석을 위한 임계값을 가지는 일반화된 혼합분포모형 개발)

  • Kim, Ho Jun;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.25-36
    • /
    • 2020
  • An increasing frequency and intensity of natural disasters have been observed due to climate change. To better prepare for these, the MOIS (ministry of the interior and safety) announced a comprehensive plan for minimizing damages associated with natural disasters, including drought and heavy snowfall. The spatial-temporal pattern of snowfall is greatly influenced by temperature and geographical features. Heavy snowfalls are often observed in Gangwon-do, surrounded by mountains, whereas less snowfall is dominant in the southern part of the country due to relatively high temperatures. Thus, snow depth data often contains zeros that can lead to difficulties in the selection of probability distribution and estimation of the parameters. A generalized mixture distribution approach to a maximum snow depth series over the southern part of Korea (i.e., Changwon, Tongyeoung, Jinju weather stations) are located is proposed to better estimate a threshold (𝛿) classifying discrete and continuous distribution parts. The model parameters, including the threshold in the mixture model, are effectively estimated within a Bayesian modeling framework, and the uncertainty associated with the parameters is also provided. Comparing to the Daegwallyeong weather station, It was found that the proposed model is more effective for the regions in which less snow depth is observed.

Projection of Future Snowfall by Using Climate Change Scenarios (기후변화 시나리오를 이용한 미래의 강설량 예측)

  • Joh, Hyung-Kyung;Kim, Saet-Byul;Cheong, Hyuk;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2011
  • Due to emissions of greenhouse gases caused by increased use of fossil fuels, the climate change has been detected and this phenomenon would affect even larger changes in temperature and precipitation of South Korea. Especially, the increase of temperature by climate change can affect the amount and pattern of snowfall. Accordingly, we tried to predict future snowfall and the snowfall pattern changes by using the downscaled GCM (general circulation model) scenarios. Causes of snow varies greatly, but the information provided by GCM are maximum / minimum temperature, rainfall, solar radiation. In this study, the possibility of snow was focused on correlation between minimum temperatures and future precipitation. First, we collected the newest fresh snow depth offered by KMA (Korea meteorological administration), then we estimate the temperature of snow falling conditions. These estimated temperature conditions were distributed spatially and regionally by IDW (Inverse Distance Weight) interpolation. Finally, the distributed temperature conditions (or boundaries) were applied to GCM, and the future snowfall was predicted. The results showed a wide range of variation for each scenario. Our models predict that snowfall will decrease in the study region. This may be caused by global warming. Temperature rise caused by global warming highlights the effectiveness of these mechanisms that concerned with the temporal and spatial changes in snow, and would affect the spring water resources.

Remote Sensing of GPS Precipitable Water Vapor during 2014 Heavy Snowfall in Gangwon Province (2014년 강원 폭설동안 GPS 가강수량 탐측)

  • JinYong, Nam;DongSeob, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.305-316
    • /
    • 2015
  • The GPS signal delays in troposphere, which are along the signal path between a transmitting satellite and GPS permanent station, can be used to retrieve the precipitable water vapor. The GPS remote sensing technique of atmospheric water vapor is capable of monitoring typhoon and detecting long term water vapor for tracking of earth’s climate change. In this study, we analyzed GPS precipitable water vapor variations during the heavy snowstorm event occurred in the Yeongdong area, 2014. The results show that the snowfall event were occurring after the GPS precipitable water vapor were increased, the maximum fresh snow depth was recorded after the maximum GPS precipitable water vapor was generated, in Kangneug and Wuljin, respectively. Also, we analyzed that the closely correlation among the GPS precipitable water vapor, the K-index and total index which was acquired by the upper air observation system during this snowstorm event was revealed.

Statistical frequency analysis of snow depth using mixed distributions (혼합분포함수를 적용한 최심신적설량에 대한 수문통계학적 빈도분석)

  • Park, Kyung Woon;Kim, Dongwook;Shin, Ji Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1001-1009
    • /
    • 2019
  • Due to recent increasing heavy snow in Korea, the damage caused by heavy snow is also increasing. In Korea, there are many efforts including establishing disaster prevention measures to reduce the damage throughout the country, but it is difficult to establish the design criteria due to the characteristics of heavy snow. In this study, snowfall frequency analysis was performed to estimate design snow depths using observed snow depth data at Jinju, Changwon and Hapcheon stations. The conventional frequency analysis is sometime limted to apply to the snow depth data containing zero values which produce unrealistc estimates of distributon parameters. To overcome this problem, this study employed mixed distributions based on Lognormal, Generalized Pareto (GP), Generalized Extreme Value (GEV), Gamma, Gumbel and Weibull distribution. The results show that the mixed distributions produced smaller design snow depths than single distributions, which indicated that the mixed distributions are applicable and practical to estimate design snow depths.