• Title/Summary/Keyword: maximum deformations

Search Result 167, Processing Time 0.019 seconds

Response Analysis of Nearby Structures with the Consideration of Tunnel Construction and Ground Conditions (터널시공 및 지반조건을 반영한 인접구조물의 거동분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.255-263
    • /
    • 2010
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different construction (ground loss) and soil characteristics. The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) and soil conditions using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of construction (ground loss) and soil conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of construction (ground loss) and soil conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

Development and Characterization of Hafnium-Doped BaTiO3 Nanoparticle-Based Flexible Piezoelectric Devices (Hf 도핑된 BaTiO3 나노입자 기반의 플렉서블 압전 소자 개발 및 특성평가)

  • HakSu Jang;Hyeon Jun Park;Gwang Hyeon Kim;Gyoung-Ja Lee;Jae-Hoon Ji;Donghun Lee;Young Hwa Jung;Min-Ku Lee;Changyeon Baek;Kwi-Il Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • Energy harvesting technology that converts the wasted energy resources into electrical energy is emerging as a semipermanent power source for self-powered electronics and wireless low-power sensor systems. Among the various energy conversion techniques, flexible piezoelectric energy harvesters (f-PEHs), using materials with piezoelectric effects, have attracted significant interest because they can harvest a small mechanical energy into electrical signals without constraints of time and space in various environments. In this study, we used a flexible piezoelectric composite film fabricated by dispersing BaHfxTi(1-x)O3 (x = 0, 0.01, 0.05, 0.1) piezoelectric powders inside a polymeric matrix to facilitate f-PEHs. The fabricated f-PEH with optimal Hf contents (x = 0.05) generated a maximum output voltage of 0.95 V and current signal of 130 nA with stable electrical/mechanical disabilities under periodically bending deformations. In addition, we demonstrated a cantilever-type f-PEH and investigated its potential as a sensor by characterizing the output performance under mechanical vibrations at various frequencies. This study provides the breakthrough for realizing self-powered energy harvesting and sensing systems by adopting the lead-free piezoelectric composites under vibrational environments.

Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure - (점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증-)

  • 송기원;김대성;장갑식
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.234-246
    • /
    • 1998
  • The objective of this study is to investigate the correlation between steady shear flow (nonlinear behavior) and dynamic viscoelastic (linear behavior) properties for concentrated polymer solutions. Using both an Advanced Rheometic Expansion System(ARES) and a Rheometics Fluids Spectrometer (RFS II), the steady shear flow viscosity and the dynamic viscoelastic properties of concentrated poly(ethylene oxide)(PEO), polyisobutylene(PIB), and polyacrylamide(PAAm) solutions have been measured over a wide range of shear rates and angular frequencies. The validity of some previously proposed relationships was compared with experimentally measured data. In addition, the effect of solution concentration on the applicability of the Cox-Merz rule was examined by comparing the steady flow viscosity and the magnitude of the complex viscosity Finally, the applicability of the Cox-Merz rule was theoretically discussed by introducing a nonlinear strain measure. Main results obtained from this study can be summarized as follows : (1) Among the previously proposed relationships dealt with in this study, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. (2) For polymer solutions with relatively lower concentration, the steady flow viscosity is higher than the complex viscosity. However, such a relation between the two viscosities is reversed for highly concentrated polymer solutions. (3) A nonlinear strain measure is decreased with increasing stran magnitude, after reaching the maximum value in small strain range. This behavior is different from the theoretical prediction demonstrating the shape of a damped oscillatory function. (4) The applicability of the Cox-Merz rule is influenced by the $\beta$ value, which indicates the slope of a nonlinear stain measure (namely, the degree of nonlinearity) at large shear deformations. The Cox-Merz rule shows better applicability as the $\beta$ value becomes smaller.

  • PDF

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.

Structural Analysis of PWR(pressurized water reactor) Canister for Applied Impact Force Occurring at the Moment of Falling Plumb Down Collision (추락낙하 충돌 시 가해지는 충격에 대한 경수로(PWR) 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2011
  • In this paper a structural analysis of the PWR(pressurized water reactor) canister with 102cm diameter is carried out to evaluate the structural safety of the canister for the impact force occurring at the moment of collision with the ground in the falling plumb down accident from the carriage vehicle which may happen during the canister handling at the spent nuclear fuel disposal repository. For this, a rigid body dynamic analysis of the canister is executed to compute the impact force using the commercial CAE system, RecurDyn, and a nonlinear structural analysis is performed to compute stresses and deformations occurring inside the canister for this computed impact force using the commercial FEM code, NISA. From these analysis results, the structural safety of the canister is evaluated for the falling plumb down accident from the carriage vehicle due to the inattention during the canister handling at the repository. The rigid body dynamic analysis performed assuming the canister as a rigid body shows that the canister falls plumb down to the ground in two types. And also it shows that early collision impact force is the biggest one and following impact forces decrease gradually. The height of the carriage vehicle in the repository is assumed as 5m in order to obtain the stable structural safety evaluation result. The nonlinear structural analysis of the canister is executed for the biggest early impact force. The structural analysis result of the canister shows that the structural safety of the PWR canister is not secured for the falling plumb down accident from the moving carriage vehicle because the maximum stresses occurring in the cast iron insert of canister are bigger than the yield stress of the cast iron.

Structural Behavior of the Buried flexible Conduits in Coastal Roads Under the Live Load (활하중이 작용하는 해안도로 하부 연성지중구조물의 거동 분석)

  • Cho, Sung-Min;Chang, Yong-Chai
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.323-328
    • /
    • 2002
  • Soil-steel structures have been used for the underpass, or drainage systems in the road embankment. This type of structures sustain external load using the correlations with the steel wall and engineered backfill materials. Buried flexible conduits made of corrugated steel plates for the coastal road was tested under vehicle loading to investigate the effects of live load. Testing conduits was a circular structure with a diameter of 6.25m. Live-load tests were conducted on two sections, one of which an attempt was made to reinforce the soil cover with the two layers of geo-gird. Hoop fiber strains of corrugated plate, normal earth pressures exerted outside the structure, and deformations of structure were instrumented during the tests. This paper describes the measured static and dynamic load responses of structure. Wall thrust by vehicle loads increased mainly at the crown and shoulder part of the conduit. However additional bending moment by vehicle loads was neglectable. The effectiveness of geogrid-reinforced soil cover on reducing hoop thrust is also discussed based on the measurements in two sections of the structure. The maximum thrusts at the section with geogrid-reinforced soil cover was 85-92% of those with un-reinforced soil cover in the static load tests of the circular structure; this confirms the beneficial effect of soil cover reinforcement on reducing the hoop thrust. However, it was revealed that the two layers of geogrid had no effect on reducing the overburden pressure at the crown level of structure. The obtained values of DLA decrease approximately in proportion to the increase in soil cover from 0.9m to 1.5m. These values are about 1.2-1.4 times higher than those specified in CHBDC.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.