DOI QR코드

DOI QR Code

Development and Characterization of Hafnium-Doped BaTiO3 Nanoparticle-Based Flexible Piezoelectric Devices

Hf 도핑된 BaTiO3 나노입자 기반의 플렉서블 압전 소자 개발 및 특성평가

  • HakSu Jang (School of Materials Science and Engineering, Kyungpook National University) ;
  • Hyeon Jun Park (School of Materials Science and Engineering, Kyungpook National University) ;
  • Gwang Hyeon Kim (School of Materials Science and Engineering, Kyungpook National University) ;
  • Gyoung-Ja Lee (Nuclear System Integrity Sensing and Diagnosis Research Division, Korea Atomic Energy Research Institute) ;
  • Jae-Hoon Ji (Materials Development Group, Corporate R&D Institute, Samsung Electro-Mechanics) ;
  • Donghun Lee (School of Materials Science and Engineering, Kyungpook National University) ;
  • Young Hwa Jung (PLS-II Beamline Division, Pohang Accelerator Laboratory) ;
  • Min-Ku Lee (Nuclear System Integrity Sensing and Diagnosis Research Division, Korea Atomic Energy Research Institute) ;
  • Changyeon Baek (Nuclear System Integrity Sensing and Diagnosis Research Division, Korea Atomic Energy Research Institute) ;
  • Kwi-Il Park (School of Materials Science and Engineering, Kyungpook National University)
  • 장학수 (경북대학교 신소재공학부) ;
  • 박현준 (경북대학교 신소재공학부) ;
  • 김광현 (경북대학교 신소재공학부) ;
  • 이경자 (한국원자력연구원 원자력안전기반연구소 기기안전진단연구부) ;
  • 지재훈 (삼성전기 중앙연구소) ;
  • 이동훈 (경북대학교 신소재공학부) ;
  • 정영화 (포항가속기연구소 PLS-II 빔라인부 에너지환경연구팀) ;
  • 이민구 (한국원자력연구원 원자력안전기반연구소 기기안전진단연구부) ;
  • 백창연 (한국원자력연구원 원자력안전기반연구소 기기안전진단연구부) ;
  • 박귀일 (경북대학교 신소재공학부)
  • Received : 2024.01.09
  • Accepted : 2024.01.19
  • Published : 2024.01.31

Abstract

Energy harvesting technology that converts the wasted energy resources into electrical energy is emerging as a semipermanent power source for self-powered electronics and wireless low-power sensor systems. Among the various energy conversion techniques, flexible piezoelectric energy harvesters (f-PEHs), using materials with piezoelectric effects, have attracted significant interest because they can harvest a small mechanical energy into electrical signals without constraints of time and space in various environments. In this study, we used a flexible piezoelectric composite film fabricated by dispersing BaHfxTi(1-x)O3 (x = 0, 0.01, 0.05, 0.1) piezoelectric powders inside a polymeric matrix to facilitate f-PEHs. The fabricated f-PEH with optimal Hf contents (x = 0.05) generated a maximum output voltage of 0.95 V and current signal of 130 nA with stable electrical/mechanical disabilities under periodically bending deformations. In addition, we demonstrated a cantilever-type f-PEH and investigated its potential as a sensor by characterizing the output performance under mechanical vibrations at various frequencies. This study provides the breakthrough for realizing self-powered energy harvesting and sensing systems by adopting the lead-free piezoelectric composites under vibrational environments.

Keywords

Acknowledgement

본 연구는2024년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의지원(No.2022R1A2C1003853, No.RS-2022-00144147)과 한국원자력연구원 자체사업의 지원을 받아 수행되었습니다.

References

  1. L. Swallow, J. Luo, E. Siores, I. Patel, and D. Dodds, "A piezoelectric fibre composite based energy harvesting device for potential wearable applications", Smart Mater Struct., Vol. 17, No. 2, p. 025017, 2008.
  2. Y. Wu, Y. Ma, H. Zheng, and S. Ramakrishna, "Piezoelectric materials for flexible and wearable electronics: A review", Mater. Des., Vol. 211, p. 110164, 2021.
  3. C. Zhang, W. Fan, S. Wang, Q. Wang, Y. Zhang, and K. Dong, "Recent progress of wearable piezoelectric nanogenerators", ACS Appl. Electron. Mater., Vol. 3, No. 6, pp. 2449-2467, 2021. https://doi.org/10.1021/acsaelm.1c00165
  4. R. Hesham, A. Soltan, and A. Madian, "Energy harvesting schemes for wearable devices", Int. J. Electron. Commun., Vol. 138, p. 153888, 2021.
  5. K. I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, and K. J. Lee, "Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons", Adv. Mater., Vol. 24, No. 22, pp. 2999-3004, 2012. https://doi.org/10.1002/adma.201200105
  6. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates", Nano Lett., Vol. 10, No. 12, pp. 4939-4943, 2010. https://doi.org/10.1021/nl102959k
  7. J. Lu, S. Hu, W. Li, X. Wang, X. Mo, X. Gong, H. Liu, W. Luo, W. Dong, C. Sima, Y. Wang, G. Yang, J.-T. Luo, S. Jiang, Z. Shi, and G. Zhang, "A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel", ACS Nano, Vol. 16, No. 3, pp. 3744-3755, 2022.
  8. N. Sezer and M. Koc, "A comprehensive review on the state-of-the-art of piezoelectric energy harvesting", Nano Energy, Vol. 80, p. 105567, 2021.
  9. S. D. Mahapatra, P. C. Mohapatra, A. I. Aria, G. Christie, Y. K. Mishra, S. Hofmann, and V. K. Thakur, "Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials", Adv. Sci., Vol. 8, No. 17, p. 2100864, 2021.
  10. J. Wu, "Perovskite lead-free piezoelectric ceramics", J. Appl. Phys., Vol. 127, No. 19, p. 190901, 2020.
  11. K. I. Park, "Recent Progress in Flexible Energy Harvesting Devices based on Piezoelectric Nanomaterials", J. Kor. Powder Metall. Inst., Vol. 25, No. 3, pp. 263-272, 2018. https://doi.org/10.4150/KPMI.2018.25.3.263
  12. M. Smith and S. Kar-Narayan, "Piezoelectric polymers: Theory, challenges and opportunities", Int. Mater. Rev., Vol. 67, No. 1, pp. 65-88, 2022. https://doi.org/10.1080/09506608.2021.1915935
  13. G. H. Haertling, "Ferroelectric ceramics: history and technology", J. Am. Ceram. Soc., Vol. 82, No. 4, pp. 797-818, 1999. https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  14. M. Habib, I. Lantgios, and K. Hornbostel, "A review of ceramic, polymer and composite piezoelectric materials", J. Phys. D Appl. Phys., Vol. 55, No. 42, p. 423002, 2022.
  15. N. Yan, A. Basari, and N. Nawir, "Piezoelectric ceramic for energy harvesting system: a review", ARPN J. Eng. Appl. Sci., Vol. 13, No. 22, pp. 8755-8775, 2018.
  16. A. Veved, G. W. Ejuh, and N. Djongyang, "Review of emerging materials for PVDF-based energy harvesting", Energy Rep., Vol. 8, pp. 12853-12870, 2022. https://doi.org/10.1016/j.egyr.2022.09.076
  17. S. Banerjee, S. Bairagi, and S. W. Ali, "A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion", Ceram. Int., Vol. 47, No. 12, pp. 16402-16421, 2021. https://doi.org/10.1016/j.ceramint.2021.03.054
  18. P. Panda and B. Sahoo, "PZT to lead free piezo ceramics: a review", Ferroelectrics, Vol. 474, No. 1, pp. 128-143, 2015. https://doi.org/10.1080/00150193.2015.997146
  19. S. More and R. Topare, "The review of various synthesis methods of barium titanate with the enhanced dielectric properties", Proc. of International conference on condensed matter and applied physics (ICC 2015), p. 020560, Bikaner, India, 2016.
  20. C.-T. Xia, E.-W. Shi, W.-Z. Zhong, and J.-K. Guo, "Preparation of BaTiO3 by the hydrothermal method", J. Eur. Ceram. Soc., Vol. 15, No. 12, pp. 1171-1176, 1995. https://doi.org/10.1016/0955-2219(95)00101-8
  21. W. Wang, L. Cao, W. Liu, G. Su, and W. Zhang, "Low-temperature synthesis of BaTiO3 powders by the sol-gel-hydrothermal method", Ceram. Int., Vol. 39, No. 6, pp. 7127-7134, 2013. https://doi.org/10.1016/j.ceramint.2013.02.055
  22. D. Y. Hyeon and K.-I. Park, "A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO 3 Nanoparticles", J. Korean Powder Metall. Inst., Vol. 26, No. 2, pp. 119-125, 2019. https://doi.org/10.4150/KPMI.2019.26.2.119
  23. K.-I. Park, S. B. Bae, S. H. Yang, H. I. Lee, K. Lee, and S. J. Lee, "Lead-free BaTiO 3 nanowires-based flexible nanocomposite generator", Nanoscale, Vol. 6, No. 15, pp. 8962-8968, 2014. https://doi.org/10.1039/C4NR02246G
  24. S. C. Park, C. Nam, C. Baek, M.-K. Lee, G.-J. Lee, and K.-I. Park, "Enhanced piezoelectric performance of composite fibers based on lead-free BCTZ ceramics and P (VDFTrFE) piezopolymer for self-powered wearable sensors", ACS Sustain. Chem. Eng., Vol. 10, No. 43, pp. 14370-14380, 2022. https://doi.org/10.1021/acssuschemeng.2c05026
  25. R. Mbarki, N. Baccam, K. Dayal, and P. Sharma, "Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling", Appl. Phys. Lett., Vol. 104, No. 12, p. 122904, 2014. https://doi.org/10.1063/1.4869478
  26. Y. Li, Z. Liao, F. Fang, X. Wang, L. Li, and J. Zhu, "Significant increase of Curie temperature in nano-scale BaTiO3", Appl. Phys. Lett., Vol. 105, No. 18, p. 182901, 2014.
  27. H. Tian, Y. Wang, J. Miao, H. Chan, and C. Choy, "Preparation and characterization of hafnium doped barium titanate ceramics", J. Alloys Compd., Vol. 431, No. 1-2, pp. 197-202, 2007. https://doi.org/10.1016/j.jallcom.2006.05.037
  28. J. Chen, C. Fu, W. Cai, G. Chen, and S. Ran, "Microstructures, dielectric and ferroelectric properties of BaHfxTi1- xO3 ceramics", J. Alloys Compd., Vol. 544, pp. 82-86, 2012. https://doi.org/10.1016/j.jallcom.2012.07.064
  29. J. Li, D. Zhang, S. Qin, T. Li, M. Wu, D. Wang, Y. Bai, and X. Lou, "Large room-temperature electrocaloric effect in lead-free BaHfxTi1- xO3 ceramics under low electric field", Acta Mater., Vol. 115, pp. 58-67, 2016. https://doi.org/10.1016/j.actamat.2016.05.044
  30. A. K. Kalyani, K. Brajesh, A. Senyshyn, and R. Ranjan, "Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3", Appl. Phys. Lett., Vol. 104, No. 25, p. 252906, 2014.
  31. D. Hyeon, G. Lee, S. Lee, J. Park, S. Kim, M. Lee, and K. Park, "High-temperature workable flexible piezoelectric energy harvester comprising thermally stable (K, Na) NbO3-based ceramic and polyimide composites", Compos. B Eng., Vol. 234, p. 109671, 2022.
  32. S. Anwar, P. Sagdeo, and N. Lalla, "Crossover from classical to relaxor ferroelectrics in BaTi1- xHfxO3 ceramics", J. Phys. Condens. Matter., Vol. 18, No. 13, p. 3455, 2006.