• Title/Summary/Keyword: maximum deformations

Search Result 168, Processing Time 0.025 seconds

Study on Convergence Technique through Structural Analysis due to the Height of the Walker (보행 기구 높이에 따른 구조해석을 통한 융합 기술연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • Nowadays, the number of people who do not move actively or are treated for rehabilitation is increasing because of the disorder or the paralysis of their own lower body by the industrial disaster. In this study, the walker for the people whose bodies are not convenient or the old is investigated. The walkers due to the height of walker are designed and the structural simulation analysis is carried out. The study models of walker are modelled with CATIA program and analyzed with ANSYS program. As the analysis result, the models of 1, 2 and 3 have the maximum stresses extremely below the yield stress of this model and the elastic deformations at these models occurs. Among these models, As the maximum deformation of model 3 has the least value among these models, models 3 is thought to have the best durability. The safety of walker model can be estimated by the basis of the result of this study. The damage can be prevented and the durability is examined by applying this result into the design of walker. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Study on Structural Strength Analysis of Automotive Seat Frame (자동차 시트 프레임의 구조 강도 해석에 관한 연구)

  • Kim, Key-Sun;Kim, Sung-Soo;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Seat is the part relevant to comfortableness and safety among automotive parts directly. It also should have sufficient stiffness and strength to satisfy these conditions and ensure the safety of passenger. Automotive seat is modelled with 3D and is simulated with structural analyses about three kinds of experiments by before and after gap, side gap, before and after moment strength. As analysis result, deformation angles of $0.038^{\circ}$ and $0.04^{\circ}$ are respectively shown at before and after gap test, side gap test. Through before and after the moment strength test, maximum total deformations of 0.18946mm and 3.2482mm are respectively shown at front and rear loads. By the study result of no excessive deformation and no fracture at automotive seat frame, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Estimation for Dynamic Deformation of the Cushioning Materials of Packaging for the Pears by Shock and Vibration During Transportation (유통 중 진동충격에 의한 배 포장 완충재의 동적 변위 추정)

  • Jung, Hyun-Mo;Park, In-Sig;Kim, Man-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • During handling unitized products, they are subjected to a variety environmental hazards. Shock and vibration hazards are generally considered the most damaging of the environmental hazards on a product, and it may encounter while passing through the distribution environment. A major cause of shock damage to products is drops during manual handling. The increasing use of unitization on pallets has been resulted in a reduction in the manual handling of products and with it a reduction in the shock hazards. This has caused and increasing interest in research focused on vibration caused damage. the use of pallets as a base for unitizing loads, aids in the mechanical handling, transportation and storage of products. Besides aiding in the handling, transportation and storage of products, a pallet also acts on and interface between the packaged goods and the distribution environment. The determination of the impact deformation of the cushioning materials such as tray cup (polymeric foam) and corrugated fiberboard pad must be carried out to design the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. In this study, the theoretical analysis of impact deformation for cushioning materials by dynamic vibration. The impact deformations of SW and DW corrugated fiberboard pad in acceleration amplitudes of 0.25 G-rms and 0.5 G-rms that were usually generated in transport vehicles during distribution environments were very small compare with the thickness of corrugated fiberboard pad. The maximum of vibration acceleration level of tray cup by vibration impact was about 3.2 G-rms. The theoretical allowable acceleration (G-factor) of the pear was 0.7102 G-rms, and the maximum dynamic deformation estimated within G-factor was about 1 mm.

  • PDF

A Convergent Investigation on the Structural Analysis of Leaf Spring at Large Truck (대형트럭에서의 판스프링의 구조해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.155-159
    • /
    • 2020
  • In this study, the structural analyses were performed on the number of leaf springs in large truck. The deformations were small for all four models. The maximum stress of model A was found to be the largest, and that of model D was the smallest. Model A was seen about 1.87 times larger than model D and about 1.52 times larger than model B. The maximum stresses of models C and D were seen to be less. In terms of the effect to reinforce one more overlapping spring, The effect of the enhancement of the strength of model D was shown to be small by comparing with model C. Therefore, model C with three overlapping springs is thought to be efficient in design and good in strength. The structural strength of leaf spring can be evaluated by applying this study result to the leaf spring at large truck. And it is seen that the result can be the design of the leaf spring with durability at large truck and the aesthetic convergence.

Prediction of Maximum Bending Strain of a Metal Thin Film on a Flexible Substrate Using Finite Element Analysis (유한요소해석을 통한 유연기판 위의 금속 박막의 최대 굽힘 변형률 예측)

  • Jong Hyup Lee;Young-Cheon Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • Electronic products utilizing flexible devices experience harsh mechanical deformations in real-use environments. As a result, researches on the mechanical reliability of these flexible devices have attracted considerable interest among researchers. This study employed previous bending strain models and finite element analysis to predict the maximum bending strain of metal films deposited on flexible substrates. Bending experiments were simulated using finite element analysis with variations in the material and thickness of the thin films, and the substrate thickness. The results were compared with the strains predicted by existing models. The distribution of strain on the surface of film was observed, and the error rate of the existing model was analyzed during bending. Additionally, a modified model was proposed, providing mathematical constants for each case.

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.

Backfill Materials for Underground Facility with Recycling Materials - Small-Scaled Laboratory Chamber Test and FEM Analysis (재활용재료를 이용한 지하매설물용 뒤채움재 - 모형챔버실험 및 유한요소해석)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.97-103
    • /
    • 2011
  • In this research, a small-scaled laboratory test and FEM analysis have been carried out to evaluate the feasibility of field construction with couple of recycled materials, such as in-situ soil, water-treatment sludge, and crumb rubbers. A static loading, which simulates the real traffic load, was adopted in lab test. The test was carried out, according to simulated field construction stages, such as excavation, bedding materials and pipe installation, placing and curing of controlled low strength materials, and simulated traffic loading. Couple of measuring instruments were adopted. The maximum vertical and horizontal deformations were 0.83% and 1.09%, during placing the CLSM. The measured vertical and horizontal deformations with curing time were 0.603mm and 0.676mm, respectively. The reduction effect of vertical and lateral earth pressure was relatively big. Also, FEM analysis was carried out to get the deformation, earth pressure and strain of PVC with different Controlled Low Strength Materials(CLSM) materials.

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

A study on the behaviour of single piles to adjacent Shield TBM tunnelling by considering face pressures (막장압의 크기를 고려한 Shield TBM 터널 근접시공이 단독말뚝의 거동에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Jeong-Sub;Jeon, Seung-Chan;Jeon, Sang-Joon;Park, Byung-Soo;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1003-1022
    • /
    • 2018
  • In the current work, a series of three-dimensional finite element analyses were carried out to understand the behaviour of a pre-existing single pile to the changes of the tunnel face pressures when a shield TBM tunnel passes underneath the pile. The numerical modelling analysed the results by considering various face pressures (25~100% of the in-situ horizontal stress prior to tunnelling at the tunnel springline). In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses have been thoroughly analysed for different face pressures. The head settlements of the pile with the maximum face pressure decreased by about 44% compared to corresponding settlement with the minimum face pressure. Furthermore, the maximum axial force of the pile developed with the minimum face pressure. The tunnelling-induced axial pile force at the minimum face pressure was found to be about 21% larger than that with the maximum face pressure. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures. In addition, the influence of the piles and the ground was analysed by considering characteristics of the soil deformations. Also, the apparent safety factor of the piles are substantially reduced for all the analyses conducted in the current simulation, resulting in severe effects on the adjacent piles. Therefore, the behaviour of the piles, according to change the face pressures, has been extensively examined and analysed by considering the key features in great details.