• Title/Summary/Keyword: maximum daily rainfall

Search Result 143, Processing Time 0.029 seconds

Seasonal Production Performance of Angora Rabbits under Sub-temperate Himalayan Conditions

  • Bhatt, R.S.;Sharma, S.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.416-420
    • /
    • 2009
  • An experiment of one-year duration was conducted on sixteen adult male German Angora rabbits under sub-temperate Himalayan conditions, to assess the effect of seasons on their body weight, wool production and quality, plane of nutrition and the digestibilities of nutrients. The daily meteorological attribute viz. minimum and maximum temperature; relative humidity and rainfall were recorded during winter (October to March), summer (April to June) and rainy (July to September) seasons. Biological parameters viz. body weight at the time of shearing, wool yield of individual rabbit, quality attributes of wool, fortnightly dry matter intake, chemical composition of feed and fodder and digestibilities of nutrients were recorded. Average minimum and maximum ambient temperature during winter, summer and rainy seasons were 4.6${\pm}$1.9 and 21.4${\pm}$2.8; 13.6${\pm}$2 and 30.3${\pm}$2; and 20.0${\pm}$1.4 and $31.0{\pm}1.8^{\circ}C$, respectively. The average relative humidity and total rainfall during winter, summer and rainy season were 69.5${\pm}$2.9% and 74.7${\pm}$21.8 mm; 58.6${\pm}$2.2% and 38.1${\pm}$18.1 mm; and 69${\pm}$4.2% and 104.0${\pm}$43.7 mm, respectively. The body weight of rabbits increased during all seasons, however, the maximum average daily weight gain of 3.47${\pm}$0.1 g was observed during the rainy season. The wool yield differed significantly (p$\leq$0.05) among different seasons with highest (140.4${\pm}$10 g) and lowest (108.5${\pm}$6.9 g) during winter and summer, respectively. The wool yield during the rainy season was 123.3${\pm}$5.2 g. The wool quality attributes revealed non-significant differences for staple length, fiber diameter, medulation percent, percent pure fibers and percent guard hairs. Plane of nutrition revealed significant (p$\leq$0.05) differences for concentrate intake. The concentrate intake was highest during winter (124.4${\pm}$2.6 g) followed by summer (86.8${\pm}$8.9 g) and rainy (80.7${\pm}$11.8 g) seasons. The reverse trend was observed in roughage intake with significantly (p${\leq}$0.05) lower intake during winter and highest during summer months. As a result total dry matter intake during different seasons was similar. Significant differences (p${\leq}$0.05) were observed for digestibilities of crude protein, crude fiber, ether extract, acid detergent fiber and cellulose. Digestibility of crude protein was highest during winter whereas the digestibilities of crude fiber, ether extract, acid detergent fiber and cellulose remained higher during the rainy season. During the winter season, the dry matter used for producing 100 g of wool was substantially lower than during other seasons and was concluded to be the best season for production of Angora wool under subtemperate Himalayan conditions.

Estimation of Future Reference Crop Evapotranspiration using Artificial Neural Networks (인공신경망 기법을 이용한 장래 잠재증발산량 산정)

  • Lee, Eun-Jeong;Kang, Moon-Seong;Park, Jeong-An;Choi, Jin-Young;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.1-9
    • /
    • 2010
  • Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, artificial neural network (ANN) models for reference crop evapotranspiration ($ET_0$) estimation were developed on a monthly basis (May~October). The models were trained and tested for Suwon, Korea. Four climate factors, daily maximum temperature ($T_{max}$), daily minimum temperature ($T_{min}$), rainfall (R), and solar radiation (S) were used as the input parameters of the models. The target values of the models were calculated using Food and Agriculture Organization (FAO) Penman-Monteith equation. Future climate data were generated using LARS-WG (Long Ashton Research Station-Weather Generator), stochastic weather generator, based on HadCM3 (Hadley Centre Coupled Model, ver.3) A1B scenario. The evapotranspirations were 549.7 mm/yr in baseline period (1973-2008), 558.1 mm/yr in 2011-2030, 593.0 mm/yr in 2046-2065, and 641.1 mm/yr in 2080-2099. The results showed that the ANN models achieved good performances in estimating future reference crop evapotranspiration.

Comparison of Automatic Calibration for a Tank Model with Optimization Methods and Objective Functions

  • Kang, Min-Goo;Park, Seung-Woo;Park, Chang-Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.1-13
    • /
    • 2002
  • Two global optimization methods, the SCE-UA method and the Annealing-simplex (A-S) method for calibrating a daily rainfall-runoff model, a Tank model, was compared with that of the Downhill Simplex method. The performance of the four objective functions, DRMS (daily root mean square), HMLE (heteroscedastic maximum likelihood estimator), ABSERR (mean absolute error), and NS (Nash-Sutcliffe measure), was tested and synthetic data and historical data were used. In synthetic data study. 100% success rates for all objective functions were obtained from the A-S method, and the SCE-UA method was also consistently able to obtain good estimates. The downhill simplex method was unable to escape from local optimum, the worst among the methods, and converged to the true values only when the initial guess was close to the true values. In the historical data study, the A-S method and the SCE-UA method showed consistently good results regardless of objective function. An objective function was developed with combination of DRMS and NS, which putted more weight on the low flows.

Analysis of Soil Erosion Hazard Zone by R Factor Frequency (빈도별 R인자에 의한 토양침식 위험지역 분석)

  • Kim, Joo-Hun;Oh, Deuk-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.47-56
    • /
    • 2004
  • The purpose of this study is to estimate soil loss amount according to the rainfall-runoff erosivity factor frequency and to analyze the hazard zone that has high possibilities of soil erosion in the watershed. RUSLE was used to analyze soil loss quantity. The study area is Gwanchon that is part of Seomjin river basin. To obtain the frequency rainfall-runoff erosivity factor, the daily maximum rainfall data for 39 years was used. The probability rainfall was calculated by using the Normal distribution, Log-normal distribution, Pearson type III distribution, Log-Pearson type III distribution and Extreme-I distribution. Log-Pearson type III was considered to be the most accurate of all, and used to estimate 24 hours probabilistic rainfall, and the rainfall-runoff erosivity factor by frequency was estimated by adapting the Huff distribution ratio. As a result of estimating soil erosion quantity, the average soil quantity shows 12.8 and $68.0ton/ha{\cdot}yr$, respectively from 2 years to 200 years frequency. The distribution of soil loss quantity within a watershed was classified into 4 classes, and the hazard zone that has high possibilities of soil erosion was analyzed on the basis of these 4 classes. The hazard zone represents class IV. The land use area of class IV shows $0.01-5.28km^2$, it ranges 0.02-9.06% of total farming area. Especially, in the case of a frequency of 200 years, the field area occupies 77.1% of total fanning area. Accordingly, it is considered that soil loss can be influenced by land cover and cultivation practices.

  • PDF

The Distribution of Precipitation in Donghae-Shi (동해시의 강수 분포 특성)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • This study examined the spatial distribution of precipitation in Donghae-Shi. The daily, monthly precipitaion on the 2 stations, 3 AWS(Automatic Weather Station) were analyzed by altitudinal distribution, the air pressure type and days of daily precipitation. The results of the study are as follows. 1 Hour greatest precipitation is 62.4mm(1994. 10. 12), Daily greatest precipitation, 200mm(1994. 10. 12), Monthly greatest precipitation, 355.5mm(1994. 10), Maximum depth of snow fall, 35.5cm(1994. 1. 29) in Donghae-Shi, 1993∼1997. Altitudinal distribution of precipitation in Summer tends to have more precipitation at higher altitude, in Winter, high mountains and coast have more precipitation than other sites do. The heavy rainfall in Donghae-Shi is mainly formed by a Typhoon, next is Jangma front. The number of consecutive days of daily precipitation $\geq$20mm is 81days, 44days of those appeared in Summer season. The synoptic environment causes the difference in observed the heavy snowfall amount between high mountains and coast.

  • PDF

Evaluation of Temperature and Precipitation on Integrated Climate and Air Quality Modeling System (ICAMS) for Air Quality Prediction (대기질 예측을 위한 기후·대기환경 통합모델링시스템 (ICAMS)의 기온 및 강수량 예측 능력 평가)

  • Choi, Jin-Young;Kim, Seung-Yeon;Hong, Sung-Chul;Lee, Jae-Bum;Song, Chang-Keun;Lee, Hyun-Ju;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.615-631
    • /
    • 2012
  • This study provides an evaluation for capability of Integrated Climate and Air quality Modeling System (ICAMS) on future regional scale climate projection. Temperature and precipitation are compared between ground-level observation data and results of regional models (MM5) for the past 30 years over the Korean peninsula. The ICAMS successfully simulates the local-scale spatial/seasonal variation of the temperature and precipitation. The probability distribution of simulated daily mean and minimum temperature agree well with the observed patterns and trends, although mean temperature shows a little cold bias about $1^{\circ}C$ compared to observations. It seems that a systematic cold bias is mostly due to an underestimation of maximum temperature. In the case of precipitation, the rainfall in winter and light rainfall are remarkably simulated well, but summer precipitation is underestimated in the heavy rainfall phenomena of exceeding 20 mm/day. The ICAMS shows a tendency to overestimate the number of washout days about 7%. Those results of this study indicate that the performance of ICAMS is reasonable regarding to air quality predication over the Korean peninsula.

Estimation of Curve Number by DAWAST Model (DAWAST 모형을 이용한 유출곡선번호 추정)

  • Kim, Tae-Cheol;Park, Seung-Gi;Mun, Jong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.423-430
    • /
    • 1997
  • It is one of the most important factors to determine the effective rainfall for estimation of flood hydrograph in design schedule. SCS curve number (CN) method has been frequently used to estimate the effective rainfall of synthesized design flood hydrograph for hydraulic structures. But, it should be cautious to apply SCS-CN originally developed in U.S.A to watersheds in Korea, because characteristics of watersheds in Korea and cropping patterns especially like a paddy land cultivation are quite different from those in USA. New CN method has been introduced. Maximum storage capacity which was herein defined as Umax can be calibrated from the streamflow data and converted to new CN-I of direst condition of soil moisture in the given watershed. Effective rainfall for design flood hydrograph can be estimated by the curve number developed in the watersheds in Korea.

  • PDF

Temporal Dynamics of Botryosphaeria dothidea Spore Dispersal in Apple Orchards and Related Climatological Factors (사과원에서 Botryosphaeria dothidea 포자 방출의 경시적 변화 및 관련된 기상요소)

  • 김기우;박은우;김성봉;윤진일
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.230-237
    • /
    • 1995
  • Airborne and waterborne ascospores and conidia of Botryosphaeria dothidea were collected in apple orchards at Suwon and Chunan in 1992 through 1994. Both waterborne and airborne spores were first detected in mid April to early May. Thereafter, spores were abundant in early June to late August and present until early December. Rainwater collections contained much more conidia than ascospores during the apple growing seasons. Airborne ascospores catches, which were also detected on humid days without measurable rainfall, were much more than airborne conidia catches. High amounts of ascospores were detected in early times of apple growing season, whereas most conidia catches occurred in later times of the season. The number of waterborne conidia and airborne ascospores was positively correlated with mean daily maximum, minimum, and average air temperatures during the trapping periods (p=0.01). However, no significant correlation was found between the number of spores and the total precipitation during the trapping periods.

  • PDF

Analysis of PM10 Concentration using Auto-Regressive Error Model at Pyeongtaek City in Korea (자기회귀오차모형을 이용한 평택시 PM10 농도 분석)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.358-366
    • /
    • 2011
  • The purpose of this study was to analyze the monthly and seasonal PM10 data using the Autoregressive Error (ARE) model at the southern part of the Gyeonggi-Do, Pyeongtaek monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables. The six meteorological variables are daily maximum temperature, wind speed, amount of cloud, relative humidity, rainfall, and global radiation. The four air pollution variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result shows that monthly ARE models explained about 17~49% of the PM10 concentration. However, the ARE model could be improved if we add the more explanatory variables in the model.

Effect of Rainfall Event on Water Quality in An Urban River Basin (강우사상이 도시하천의 수질오염에 미치는 영향 분석)

  • Seo, Soon-Seok;Song, Chang-June;Kim, Soo-Jun;Kim, Duck-Gil;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1799-1803
    • /
    • 2010
  • 도시하천에서 실제적으로 비점오염원 유입에 의한 수질오염은 분석이 용이하지 않기 때문에 본 연구에서는 강우사상에 따른 도시하천의 수질변화에 대한 연구를 통해 수질오염을 분석하고자 하였다. 본 연구는 도시하천에서의 강우사상이 수질오염에 막대한 영향을 끼친다는 기본적인 개념을 바탕으로 강우사상에 따른 수질변화를 분석하는 것이 목적이다. 대상지역은 이미 도시화가 많이 진행되어 도시하천의 특성을 가진 인천에서 시작해 김포에서 끝나는 굴포천 유역을 대상지역으로 설정하였으며 XP-SWMM을 이용하여 1994년~2009년의 유출량을 모의하고 교차상관분석(Cross Correlation)을 통해 수질과 유량의 상관성을 분석한 결과 6개월 간격으로 강한 음의 상관성을 갖는 것을 알 수 있었다. 또한, 최근 우리나라에서도 적용하기 위해 검토 중인 수질오염총량제에서 적용하는 TMDL(Total Maximum Daily Load)의 기본개념을 이용하여 오염원의 총량을 산정하였다.

  • PDF