• Title/Summary/Keyword: maximum compressive load

Search Result 187, Processing Time 0.028 seconds

An Experimental study on field application of Permanent form (비탈형 영구거푸집의 현장 적용을 위한 실험적 연구)

  • 정근호;김우재;이영도;정재영;정상진
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.143-150
    • /
    • 2001
  • Permanent-Form is one of system forms for reducing human labor, work costs, oscillation, noise, construction wastes and so on. Permanent-Form is made from precast method in facilities, and carried in construction site to assemble with no demolding. The biggest expense to produce permanent-Form is about manufacturing mold. This papers about structural efficiency evaluation, construction efficiency test. The result of this study is below. (1) In the compressive strength test of column. Fly ash specimen and polymer specimen's strength developed as each 8%, 14% to comparison with standard specimen. The reason of this result from form section area increase and form's reinforcing bar (2) The Degree of column crack in permanent form is lower than another one's The glass fiber's fiber reinforcement effect brings like this. (3) In the flexural load test of beam, the early crack load and maximum load of permanent form use specimen showed 20% higher than standard specimen's. (4) In field application experiment, an constructional error is satisfied with the allowable margin of error, $\pm$5mm (5) When the concrete is placed into the form inside, The transformation degree of permanent form is lower than plywood form's. (6) The concrete packing ability of permanent form is satisfactory. (7) The bonding strength of permanent form shows enough strength - 6kgf/$\textrm{cm}^2$.

  • PDF

Damage evaluation of RC beams strengthened with hybrid fibers

  • Sridhar, Radhika;Prasad, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.9-19
    • /
    • 2019
  • This paper describes an experimental investigation on hybrid fiber reinforced concrete (HYFRC) beams. And the main aim of this present paper is to examine the dynamic characteristics and damage evaluation of undamaged and damaged HYFRC beams under free-free constraints. In this experimental work, totally four RC beams were cast and analyzed in order to evaluate the dynamic behavior as well as static load behavior of HYFRCs. Hybrid fiber reinforced concrete beams have been cast by incorporating two different fibers such as steel and polypropylene (PP). Damage of HYFRC beams was obtained by cracking of concrete for one of the beams in each set under four-point bending tests with different percentage variation of damage levels as 50%, 70% and 90% of maximum ultimate load. And the main dynamic characteristics such as damping, fundamental natural frequencies, mode shapes and frequency response function at each and every damage level has been assessed by means of non-destructive technique (NDT) with hammer excitation. The fundamental natural frequency and damping values obtained through dynamic tests for HYFRC beams were compared with control (reference) RC beam at each level of damage which has been acquired through static tests. The static experimental test results emphasize that the HYFRC beam has attained higher ultimate load as compared with control reinforced concrete beam.

Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading

  • Chen, Jiye;Zhuang, Yong;Fang, Hai;Liu, Weiqing;Zhu, Lu;Fan, Ziyan
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.133-148
    • /
    • 2019
  • This paper reports on the energy absorption characteristics of a lattice-web reinforced composite sandwich cylinder (LRCSC) which is composed of glass fiber reinforced polymer (GFRP) face sheets, GFRP lattice webs, polyurethane (PU) foam and ceramsite filler. Quasi-static compression experiments on the LRCSC manufactured by a vacuum assisted resin infusion process (VARIP) were performed to demonstrate the feasibility of the proposed cylinders. Compared with the cylinders without lattice webs, a maximum increase in the ultimate elastic load of the lattice-web reinforced cylinders of approximately 928% can be obtained. Moreover, due to the use of ceramsite filler, the energy absorption was increased by 662%. Several numerical simulations using ANSYS/LS-DYNA were conducted to parametrically investigate the effects of the number of longitudinal lattice webs, the number of transverse lattice webs, and the thickness of the transverse lattice web and GFRP face sheet. The effectiveness and feasibility of the numerical model were verified by a series of experimental results. The numerical results demonstrated that a larger number of thicker transverse lattice webs can significantly enhance the ultimate elastic load and initial stiffness. Moreover, the ultimate elastic load and initial stiffness were hardly affected by the number of longitudinal lattice webs.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Evaluation of Optimum Spacing between Anchor Bodies of Distributive Compression Anchor Using Numerical Simulation (수치해석을 이용한 압축 분산형 앵커의 내하체 최적 간격 산정)

  • Gu, Kyo-Young;Shin, Gyu-Bum;Chung, Choong-Ki;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.29-39
    • /
    • 2019
  • Load distributive compression anchors distribute the compressive stress in the grout and increase the pull-out capacity of the anchor by using multiple anchor bodies. In this anchor type, the spacing between the anchor bodies has a large influence on the stress in the grout. However, there are few researches about the spacing and there are no design standards. Therefore, the effect of the anchor body spacing on the grout stress was analyzed by performing finite element analyses. First, the applicability of the numerical modeling was verified by comparing with field test results of a compression anchor. Then, the parametric study was performed varying soil type, anchor body spacing, and load magnitude. The analysis results showed that the maximum compressive stress in the grout increased at the narrower spacing and the tensile stress developed at the wider spacing. Therefore, the optimum spacing was defined as the spacing, which prevents the superposition of compressive stresses and minimize the tensile stress. Finally, the optimum spacing was proposed according to the soil type and the load magnitude.

Compressive performance of RAC filled GFRP tube-profile steel composite columns under axial loads

  • Ma, Hui;Bai, Hengyu;Zhao, Yanli;Liu, Yunhe;Zhang, Peng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.335-349
    • /
    • 2019
  • To investigate the axial compressive performance of the recycled aggregate concrete (RAC) filled glass fiber reinforced polymer (GFRP) tube and profile steel composite columns, static loading tests were carried out on 18 specimens under axial loads in this study, including 7 RAC filled GFRP tube columns and 11 RAC filled GFRP tube-profile steel composite columns. The design parameters include recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, slenderness ratio and RAC strength. The failure process, failure modes, axial stress-strain curves, strain development and axial bearing capacity of all specimens were mainly analyzed in detail. The experimental results show that the GFRP tube had strong restraint ability to RAC material and the profile steel could improve the axial compressive performance of the columns. The failure modes of the columns can be summarized as follow: the profile steel in the composite columns yielded first, then the internal RAC material was crushed, and finally the fiberglass of the external GFRP tube was seriously torn, resulting in the final failure of columns. The axial bearing capacity of the columns decreased with the increase of RCA replacement percentage and the maximum decreasing amplitude was 11.10%. In addition, the slenderness ratio had an adverse effect on the axial bearing capacity of the columns. However, the strength of the RAC material could effectively improve the axial bearing capacity of the columns, but their deformability decreased. In addition, the increasing profile steel ratio contributed to the axial compressive capacity of the composite columns. Based on the above analysis, a formula for calculating the bearing capacity of composite columns under axial compression load is proposed, and the adverse effects of slenderness ratio and RCA replacement percentage are considered.

The Comparison of the Stability of a Container Crane according to various Wind Load Design Codes (풍하중 설계 기준에 따른 컨테이너 크레인의 안정성 비교)

  • Lee Seong-Wook;Shim Jae-Joon;Han Dong-Seop;Han Geun-Jo;Kim Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.561-566
    • /
    • 2005
  • This study was carried out to amlyze and compare the stability of a 50ton container crane according to various wind load design codes. The wind load was evaluated according to 'The Specification of Port Facilities and Equipments / Specification for the design of crane structures (KS A 1627)' and 'Load Criteria of Building Structures' effected by the ministry of construction & transportation And the uplift forces qf a container crane under this wind load were estimated by amlyzing reaction forces at each supporting point and compared each other. From this study, we noticed that the design wind velocity criteria need to be defined specifically when the wind load is evaluated to design a container crane. And we verified the necessity of the estimation of the uplift forces at each supporting point to analyze a structural stability of a container crane and the maximum compressive force in order to consider the stability of the ground foundation of the berth.

Free Vibrations and Buckling Loads of Axially Loaded Cross-Ply Laminated Composite Beam-Columns with Multiple Delaminations (다층간분리된 직교 적층 보-기둥의 자유진동과 좌굴하중)

  • 이성희;김형열;박기태;박대효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.523-534
    • /
    • 2002
  • Free vibration and buckling analysis of multi-delaminated composite beam-columns subjected to axial compressive load is performed in the present study In order to investigate the effects of multi-delaminations on the natural frequency and the elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-dclamination tip. The characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delauunated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and the elastic buck)ing load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.

Evaluation of Structural Performance of RC Beams Retrofitted Steel Fiber consequential Replacement of Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag (순환골재와 고로슬래그 미분말을 치환한 강섬유 보강 RC보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.477-484
    • /
    • 2013
  • In this study, eleven reinforced concrete beams, ground granulated blast furnace slag, replacing recycled coarse aggregate (BRS series) and recycled coarse aggregate with steel fiber (BSRS series), and standard specimen (BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the shear performance of such test specimens, such as the load-displacement, the failure mode and the maximum load carrying capacity. All the specimens were modeled in 1/2 scale-down size. Test results showed that test specimens (BSRS Series) was increased the compressive strength by 9%, the maximum load carrying capacity by 1~6% and the ductility capacity by 1.02~1.13 times in comparison with the standard specimen (BSS). And the specimens (BSRS Series) showed enough ductile behavior and stable flexural failure.

Improvement of Structural Performance of RC Beams retrofitted Hybrid Fiber using Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag (순환굵은골재 및 고로슬래그 미분말을 사용한 하이브리드섬유보강 철근콘크리트 보의 구조성능 개선)

  • Yi, Dong-Ryul;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, thirteen reinforced concrete beams, ground granulated blast furnace slag, replacing recycled coarse aggregate with PVA fiber (BSPG series) and recycled coarse aggregate with hybrid fiber ($BSPGR_1$, $BSPGR_2$ series), and standard specimen (BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the Structural performance of such test specimens, such as the load-displacement, the failure mode, and the maximum load carrying capacity. All the specimens were modeled in 1/2 scale-down size. Test results showed that test specimens ($BSPGR_1$, $BSPGR_2$ series) was increased the compressive strength by 13%, the maximum load carrying capacity by 4~21% and the ductility capacity by 4~28% in comparison with the standard specimen (BSS). And the specimens ($BSPGR_1$, $BSPGR_2$ series) showed enough ductile behavior and stable flexural failure.