• Title/Summary/Keyword: maximum $F_0$

Search Result 1,040, Processing Time 0.022 seconds

The Jerking Force by Hooked Carp and its Periodicity with the Tail Beat (낚시에 물린 잉어가 미치는 힘과 꼬리 진동에 의한 주기성)

  • KO Kwan-Soh;KIM Yong-Hae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.226-232
    • /
    • 1982
  • The measurements of the jerking force and the tail beat by hooked carp were carried out using a strain gauge at a fish pond from July to August 1981. The maximum jerking force was sustained for a while in the initial state after a carp was hooked, but the jerking force was gradually decreased as a function of the time elapsed until the fish was utterly exhausted, and it converged to the body weight at last. The results are as follows : 1. The maximum jerking force $F_m(g)$ can be expressed with empirical formula : $$F_m=3.23W+105$$ where W (g) is the body weight. 2. Dynamic change of the maximum jerking force $F_n(g)$ by one tail beat with time $t_{n}(-10T/2{\leq}\;t_n{\leq}10T/2)$ can he induced with the equation as follows : $$F_n=(0.27W-6.52)(|t_n|+C)^{-2.10}$$ where the period T (sec) is given by the following equation with the body weight : T=0.000385W+0.193 3. The jerking force at each of the peak points $F_p$ (g) varies with the time elapsed t (sec) as following equation : $$F_{p}=(2.23W+105)e^{-{\beta}t}+W$$. The value of durability index $\beta$ was nearly zero in the initial state and about 1.7 in the exhausted state at last. 4. It was clearly shown that the change of jerking force by hooked carp was closely related to the tail beat from a paired difference T-test.

  • PDF

A study on the oscillatory feed cutting (振動移送切削 에 관한 硏究)

  • 박천경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.204-211
    • /
    • 1983
  • To investigate the effects of oscillatory feed cutting on the chip breaking and surface roughness and circularity, A prototype unit developed for the experiment is used. The results obtained are as follows. (1) It is obtained the region of chip breaking as Ftmin $f_{+min}$0.03mm ( = 0.3f). (2) The surface roughness becomes worse with increasing the value of A/f, but the type of variation with respect to n/N differs from the case of A/f>1, f<1. (3) The circularity of workpiece is increasing from the fundamental mode of n/N=i to the maximum value of n/N=i+0.5, and becomes worse with increasing the value of A/f. (4) From the viewpoint of above details and tool mechanics, the condition of A/f=1.0 and n/N=i.+-. .delta. (0.3<.delta.<0.4) is recommended.

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish- (밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우-)

  • 김철기;김진한;정하우;최홍규;권영현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF

Evaluating efficiency of application the skin flash for left breast IMRT. (왼쪽 유방암 세기변조방사선 치료시 Skin Flash 적용에 대한 유용성 평가)

  • Lim, Kyoung Dal;Seo, Seok Jin;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.49-63
    • /
    • 2018
  • Purpose : The purpose of this study is investigating the changes of treatment plan and comparing skin dose with or without the skin flash. To investigate optimal applications of the skin flash, the changes of skin dose of each plans by various thicknesses of skin flash were measured and analyzed also. Methods and Material : Anthropomorphic phantom was scanned by CT for this study. The 2 fields hybrid IMRT and the 6 fields static IMRT were generated from the Eclipse (ver. 13.7.16, Varian, USA) RTP system. Additional plans were generated from each IMRT plans by changing skin flash thickness to 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm and 2.5 cm. MU and maximum doses were measured also. The treatment equipment was 6MV of VitalBeam (Varian Medical System, USA). Measuring device was a metal oxide semiconductor field-effect transistor(MOSFET). Measuring points of skin doses are upper (1), middle (2) and lower (3) positions from center of the left breast of the phantom. Other points of skin doses, artificially moved to medial and lateral sides by 0.5 cm, were also measured. Results : The reference value of 2F-hIMRT was 206.7 cGy at 1, 186.7 cGy at 2, and 222 cGy at 3, and reference values of 6F-sIMRT were measured at 192 cGy at 1, 213 cGy at 2, and 215 cGy at 3. In comparison with these reference values, the first measurement point in 2F-hIMRT was 261.3 cGy with a skin flash 2.0 cm and 2.5 cm, and the highest dose difference was 26.1 %diff. and 5.6 %diff, respectively. The third measurement point was 245.3 cGy and 10.5 %diff at the skin flash 2.5 cm. In the 6F-sIMRT, the highest dose difference was observed at 216.3 cGy and 12.7 %diff. when applying the skin flash 2.0 cm for the first measurement point and the dose difference was the largest at the application point of 2.0 cm, not the skin flash 2.5 cm for each measurement point. In cases of medial 0.5 cm shift points of 2F-hIMRT and 6F-sIMRT without skin flash, the measured value was -75.2 %diff. and -70.1 %diff. at 2F, At -14.8, -12.5, and -21.0 %diff. at the 1st, 2nd and 3rd measurement points, respectively. Generally, both treatment plans showed an increase in total MU, maximum dose and %diff as skin flash thickness increased, except for some results. The difference of skin dose using 0.5 cm thickness of skin flash was lowest lesser than 20 % in every conditions. Conclusion : Minimizing the thickness of skin flash by 0.5 cm is considered most ideal because it makes it possible to keep down MUs and lowering maximum doses. In addition, It was found that MUs, maximum doses and differences of skin doses did not increase infinitely as skin flash thickness increase by. If the error margin caused by PTV or other factors is lesser than 1.0 cm, It is considered that there will be many advantages in with the skin flash technique comparing without it.

  • PDF

Investigation of Material Properties of the Steel Fiber Reinforced Concrete (강섬유 보강콘크리트의 재료적 성상에 관한 고찰)

  • 이현호;권영호;허무원;정현석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.733-736
    • /
    • 2002
  • As composite materials, the addition of steel fiber in concrete significantly improves the engineering properties of structural members. The purpose of this study is to define the strengthening effect of steel fiber in a point of material usage. From tile material test. compression strength, tensile splitting strength and flexural strength were evaluated by steel fiber volume fraction ($V_f$) and aspect ratio (AR) of steel fiber. In case of AR 67, $V_f$ 2.0% could be achieved maximum steel fiber strengthening effect. And the AR 80 case, $V_f$ 1.0% could be achieved maximum effect than the effect of $V_f$ 1.5%.

  • PDF

Optimization of Distribution Basin Weirs at a Sewage Treatment Plant Based on Computational Fluid Analysis Using the Taguchi and Minitab Method (전산유체해석과 다구찌 및 미니탭 방법을 활용한 하수처리장 분배조 웨어 최적화)

  • Jung, Yong-Jun;Park, Hae-Sik;Cho, Young-Man
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.983-991
    • /
    • 2021
  • The role of the distribution basin role is to apportion incoming raw water to the primary sedimentation basin as part of the water treatment process. The purpose of this study was to calculate the amount of water in the distribution basin using computational fluid dynamics (CFD) analysis and to find a way to improve any non-uniformity. We used the Taguchi method and the minitab tool as optimization methods. The results of the CFD calculation showed that the distribution flow had a deviation of 5% at the minimum inflow, 10% at the average inflow, and 22% at the maximum inflow. At maximum flow, the appropriate heights of the 7 weirs(C, D, A, B, E, F, G) were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, according to the Taguchi optimization tool. Here, the maximum deviation of the distribution amount was 9% and the standard deviation was 23.7. The appropriate heights of the 7 weirs, according to the Minitab tool, were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, for weirs C, D, A, B, E, F, and G. Therefore, the maximum deviation of the distribution amount was 8% and the standard deviation was 17.1, which was slightly improved compared to the Taguchi method.

Comparison of voice range profiles of modal and falsetto register in dysphonic and non-dysphonic adult women (음성장애 성인 여성과 정상음성 성인 여성 간 진성구와 가성구의 음성범위프로파일 비교)

  • Jaeock Kim;Seung Jin Lee
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.67-75
    • /
    • 2022
  • This study compared voice range profiles (VRPs) of modal and falsetto register in 53 dysphonic and 53 non-dysphonic adult women with gliding vowel /a/'. The results shows that maximum fundamental frequency (F0MAX), maximum intensity (IMAX), F0 range (F0RANGE), and intensity range (IRANGE) are lower in the dysphonic group than in the non-dysphonic group. F0MAX and F0RANGE are significantly higher in falsetto register than modal register in both groups. IMAX and IRANGE are significantly higher in falsetto register in the non-dysphonic group, but those are not different between two registers in the dysphonic group. There was no statistically significant difference in minimum F0 (F0MIN) and minimum intensity (IMIN) between the two groups. Modal-falsetto register transition occurred at 378.86 Hz (F4#) in the dysphonic group and 557.79 Hz (C5#) in the non-dysphonic group, which was significantly lower in the dysphonic group. It can be seen that both modal and falsetto registers in dysphonic adult women are reduced compared to non-dysphoinc adult women, indicating that the vocal folds of dysphonic adult women are not easy to vibrate in high pitches. The results of this study would be the basic data for understanding the acoustic features of voice disorders.

Maximum Likelihood Estimation of Multinomial Parameters with Known or Unknown Crossing Point

  • Lee, Ju-Young;Oh, Myongsik
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.947-956
    • /
    • 1999
  • We define a crossing point $x_0$ such that f(x)$\geq$g(x) for x$\leq$$x_0$ and f(x)$\leq$g(x) for x>$x_0$ where f and g are probability density functions. We may encounter suchy situation when we compare two histograms from two independent observations. For example two contingency tables where initially admitted students and actually enrolled students are classified according to their high school ranking may show such situation, In this paper we consider maximum likelihood estimation of cell probabilities when a crossing point exists, We first assume a known crossing point and find an estimator. The estimation procedure for the case of unknown crossing point is just a straightforward extension. A real data is analyzed for an illustrative purpose.

  • PDF

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops -Tomato and Chinese Cabbage- (밭작물소비수량에 관한 기초적 연구 -토마토 및 가을배추-)

  • 김철기;김진한;최홍규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.25-37
    • /
    • 1988
  • The purpose of this study is to fmd out the bask data for irrigation plans of tomato and chinese cabbage during the growing period, such as total amount of evapotranspiration, coefficients of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum evapotranspiration, optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soji texture for split plot, and three levels, irrigation points with PF 1.8, PF 2.2, PF 2.6 for tomato and those with PF 1.9, PF 2.3, PF 2.7, for Chinese cabbage, soil textures of silty clay, sandy loam and sandy soil for both tomato and Chinese cabbage, with two replications. The results obtained are summarized as follows 1. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteoralogical factors considered. Therefore, the pan evaporation is enough to be used as a meteorological index measuring the quantity of evapotranspiration. 2. 1/10 probability values of maximum total pan evaporation during growing period for tomato and Chinese cabbage were shown as 355.8 mm and 233.0 mm, respectively, and those of maximum ten day pan evaporation for tomato and Chinese cabbage, 68.0 mm and 43.8 mm, respectively. 3. The time that annual maximum of ten day pan evaporation can be occurred, exists at any stage of growing period for tomato, and at any growth stage till the late of Septemberfor Chinese cabbage. 4. The magnitude of evapotranspiration and of its coefficient for tomato and Chinese cabbage was occurred in the order of pF 1.8>pF 2.2>pF 2.6 and of pF 1.9>pF 2.3>pF 2.7 respectively in aspect of irrigation point and of silty clay>sandy loam>sandy soil in aspect of soil texture. 5. 1/10 probability value of evapotranspiration and its coefficient during the growing period of tomato were shown as 327.3 mm and 0.92 respectively, while those of Chinese cabbage, 261.0 mm and 1.12 respectively. 6. The time that maximum evapotranspiration of tomato can be occurred is at the date of fortieth to fiftieth after transplanting and the time for Chinese cabbage is presumed to he in the late of septemben At that time, 1/10 probability value of ten day evapotranspiration and its coefficient for tomato is presumed to be 74.8 mm and 1.10 respectively, while those of Chinese cabbage, 43.8 mm and 1.00. 7. In aspect of only irrigaton point, the weight of raw tomato and Chinese cabbage were mcreased in the order of pF 2.2>pF 1.8>pF 2.6 and of pF 1.9>pF 2.3>pF 2.7, respectively but optimum irrigation point for tomato and Chinese cabbage, is presumed to be pF 2.6 - 2.7 if nonsignificance of the yield between the different irrigation treatments, economy of water, and reduction in labour of irrigaion are synthetically considered. 8. The soil moisture extraction patterns of tomato and Chinese cabbage have shown that maximum extraction rate exists at 7 cm deep layer at the beginning stage of growth m any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates of 21 cm deep layer and 35 cm deep layer have shown tendency to be more increased in silty clay than in any other soils. 9. As optimum irrigation point is presumed to be pF Z6-2.7, total readily available moisture of tomato in silty clay, sandy loam and sandy sofl becomes to be 19.06 mm, 21.37 mm and 20.91 mm respectively while that of Chinese cabbage, 18.51 mm, 20.27 mm, 21.11 mm respectively. 10. On the basis of optimum irrigation point with pF 2.6 - 2.7 the intervals of irrigation date of tomato and Chinese cabbage at the growth stage of maximum consumptive use become to be three days and five days respectively.

  • PDF

Lp-Boundedness for the Littlewood-Paley g-Function Connected with the Riemann-Liouville Operator

  • Rachdi, Lakhdar Tannech;Amri, Besma;Chettaoui, Chirine
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.185-220
    • /
    • 2016
  • We study the Gauss and Poisson semigroups connected with the Riemann-Liouville operator defined on the half plane. Next, we establish a principle of maximum for the singular partial differential operator $${\Delta}_{\alpha}={\frac{{\partial}^2}{{\partial}r^2}+{\frac{2{\alpha}+1}{r}{\frac{\partial}{{\partial}r}}+{\frac{{\partial}^2}{{\partial}x^2}}+{\frac{{\partial}^2}{{\partial}t^2}}};\;(r,x,t){\in}]0,+{\infty}[{\times}{\mathbb{R}}{\times}]0,+{\infty}[$$. Later, we define the Littlewood-Paley g-function and using the principle of maximum, we prove that for every $p{\in}]1,+{\infty}[$, there exists a positive constant $C_p$ such that for every $f{\in}L^p(d{\nu}_{\alpha})$, $${\frac{1}{C_p}}{\parallel}f{\parallel}_{p,{\nu}_{\alpha}}{\leqslant}{\parallel}g(f){\parallel}_{p,{\nu}_{\alpha}}{\leqslant}C_p{\parallel}f{\parallel}_{p,{\nu}_{\alpha}}$$.