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Maximum Likelihood Estimation of Multinomial Parameters
with Known or Unknown Crossing Point
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Abstract

We define a crossing point x, such that Ax)=g(x) for x<x, and Ax)<g(x) for
x>x, where f and g are probability density functions. We may encounter such

situation when we compare two histograms from two independent observations. For
example, two contingency tables where initially admitted students and actually
enrolled students are classified according to their high school ranking may show such
situation. In this paper we consider maximum likelihood estimation of cell probabilities
when a crossing point exists. We first assume a known crossing point and find an
estimator. The estimation procedure for the case of unknown crossing point is just a
straightforward extension. A real data is analyzed for an illustrative purpose.

1. Introduction

The area of statistics involving contingency tables is rich with problems in which
restrictions on the parameter space can be exploited. Most of such restrictions are related to
various types of dependence concepts and studied by many researchers. Interested readers
may refer to Cohen and Sackrowitz(1991), Douglas, et al.(1990), Grove(1980), Hirotsu(1982),
Nguyen and Sampson(1987), Oh(1995, 1996, 1998), Patefield(1982) among others. In this paper
we consider a different type of dependence concept which is related to a restriction concerning
two probability density functions.

First consider the two random variables—continuous or discrete, X and Y with the same
support. Let f and g be the probability density functions of X and Y, respectively. Suppose

for some x, either known or unknown, we have
Ax)=g(x) for x<xy and Ax)<g(x) for x> xg.
We call x, a crossing point of the two probability density functions. We note that
xo=inf{x : Ax)<g(x)}. In a 2 by k contingency table, suppose the first row has

multinomial distribution with parameter (% ; ¢;,...,q, and the second row has multinomial
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distribution with parameter (m ; p,...,p,). where j=1,.., k%, ﬁq,~= ilb,-=l. And then
f=

1=1
q; and p; satisfy the following restriction (R1), for some jg,
p;—a;<0 for j=1,...,79 and p,—q ;=0 for j=j4+1, ..., A

This type of restriction is often found in practice. Suppose a university official classifies
newly admitted students according to their high school percentile ranks. Not all of them will
attend the university and the vacancy will be filled by the students who applied for the
university but not admitted initially. Then one can easily expect that the proportion of enrolled
students with high high-school rank will be decreased while the proportion of students with
low high-school rank is increased. In this sense one may want to know where the crossing
point is. Borrowing the term of reliability we may say that '‘new is not better than used.”

Similar works have been done by some researchers. Among them Hawkins and Kochar
(1991) studied inference for the crossing point of two continuous cumulative distribution
functions. But we are not aware that there is substantial amount of research works
concerning inference for the crossing point of two probability density functions.

In this paper we are going to study the maximum likelihood estimation of multinomial
parameters under known or unknown crossing point. The main purpose of this paper is to
provide the explicit forms of the maximum likelihood estimates of cell probabilities under

aforementioned restriction (R1) with known crossing point 7, using the techniques developed

in order restricted statistical inference. For the case of unknown crossing point we can find
maximum likelihood estimate of the crossing point and corresponding cell probabilities by
repeated use of the estimation procedure for the case of known crossing point. The details
will be given at the end of Section 3.

In this paper we consider three types of sampling schemes, which are full multinomial, one
and two sample product multinomial models. We state these sampling schemes briefly. The
full multinomial assumes the joint distribution of cell counts given the total count. If we fix
row{column) totals, each row(column) is distributed as multinomial distribution. We will call
this model row(column) product multinomial model. Note that the column product multinomial
model in a 2 by k contingency table is just a product of k independent binomial models. We
will call simply product multinomial model for row product multinomial model. In section 2,
we consider the full multinomial model. In section 3, we consider the product multinomial
models in three ways; one- and two-sample product multinomial models and binomial model.
For each of the sampling scheme the explicit forms of maximum likelihood estimates of cell
probability are given. In section 4, we analyze a real data to illustrate the estimation
procedure discussed in this paper. In section 5, we briefly discuss the possible extension of
the result obtained in this paper and the likelihood ratio tests for given crossing point.
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2. Full Multinomial Model

Let 0<p ;<1 for i=1,2,7=1,2,..., %k and b 7= 1. The likelihood function is proportional
12

tol,= lel ]Ijl pZ-‘”. We would like to find p,;’s which maximize L, subject to the
following restriction (R2)
Py~ D220 for j=1,...,7¢ and py;—py5 <0 for j=7,+1,... &
It is convenient to define a one-to-one transformation of the parameter space by introducing
new parameters 6, and J; defined by 6;=p;/(p;+py) and 8;=py+ Dy, Jj=1,... .k
Then py=260,8;, ps,=06,{1—60,), j=1,...,k and the likelihood function L, is rewritten

as

[ ﬁleff"(l— 6) m] : [ ﬂla;”“* ”’], (2.1)
1= =

where 0<8;, ¢6;<1, ﬁIS,-:l.

If restriction (R2) is expressed in terms of &;'s and J;'s, we have

0,2% for j=1,...,7, and e,-s% for j=jo+1, ..., k.

The above restriction does not include &;’s. This suggests that we can maximize (2.1) by
maximizing the two parts(one involves only @;'s and the other involves only &;'s)
separately. Note that the unrestricted maximum likelihood estimate for @;'s and f?\j’s are

given by, for j=1,..., &,

B, =LV and ¥, = hy+ b
j plj+ b j i 27
Then the restricted maximum likelihood estimates of 6; and §&; are given by @] and &,
where
1 by oo .
max{—,ﬁ} if ]=1,...,] ,
gt — 27 Pyt by ’
T 1 by
min{~+ , —=——2=—1} if j=j7,+1,..,A
27 pyt by ’

8} = Pyt b
The estimation procedure for the case of unknown crossing point when the product
multinomial model is assumed will be given at the end of next section. The estimation
procedure for the full multinomial model with unknown crossing point is quite similar to that
for the product multinomial model. Thus the estimation procedure will not be given here.
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3. Product Multinomial Model

First, suppose g;'s are known and the second row in a 2 by k has multinomial

distribution with (#; p;,...,04), 21(1,: é}b,:l. This model is called one sample
7= 7=

product multinomial model. We consider the maximum likelihood estimation cell probabilties

PR
np;

under (R1). The likelihood function of this model is proportional to L ,= ﬁl p; . It is
=

convenient to partition the whole index set J=1{j: 1<j<k} into four subsets J;, />, /3 and

J4 as follows;

Ji ={ii=1,...70. D;—q;<0},

T2 ={ii=1,...70, b,—ap0},

Js ={ij=jo+1,....k p;—q;=0}, and
]4 ={]]=]0+1,,k, 21‘—q,'<0}.

We note that violations to the restriction (R1) occur on J5 and J,;. Let, for i=1,...,4,

P,= ];tp;', Q= ];{CI,'.

Now we are going to show that the maximum likelihood estimate p} of p; under the

restriction is determined by ¢; if je J,UJ, First we need to state the unimodality of
multinomial likelihood function which is crucial to solve this maximization problem. We note

that the likelihood function is unimodal with respect to each of p;'s. That is, for a given p;
the likelihood function is strictly increasing for p ;< ?J ; and strictly decreasing for p;> ZJ j

while others are fixed. Suppose (x,,%9,...,x, has multinomial distribution with parameter

(n; py,....,ps). Then the likelihood function Ax;,x4,...,x,) is, where ﬁ:lxi= n,

n! ﬁ x

pl.l
”x.l =1
=1 ¥

which is reexpressed by Ax i, x5, ...,x ) =Ax9, %3, ....,xdx ) - Ax}), ie,

(Ez:!)! Ijz( lf;)l )

Now we find the maximum likelihood estimate of p; 7=2...,k while p; is being fixed.

! % n—x,
. [_ n! T p1'(1—py) ] (3.1)

(n—xDlx

Then the maximum likelihood estimates of p;'s also change their values but the first part of

(3.1) does not change its value. Suppose p; is bounded by ¢; and $1>q1 then the

restricted maximum likelihood estimate should be ¢;. By the similar argument discussed
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above we can show that p;=gq,; for j&J,UJ,.

Fixing p; by p}’:q,- for je J,UJ4, L, can be rewritten as

PP 0 ol
and we need to maximize it subject to
P\+P3=Q,+Q; P—Q=<0,andP;— Q3=0.

We note that @+ @3 1. It is convenient to define a one-to-one transformation of the
parameter space by introducing new parameters S,,S; defined by S;=P,/(Q+ Q3),
S3=P3/(Q 4+ Q3). Then the restriction becomes

&
S1,53¢<1,8,+S5=1, d S\ &——+—,
0<S,S3 1 3 an =70, +Q,
and the likelihood function is
srhgrfiogrfig_spy" ™, (3.2)
Now we maximize (3.2) under the above restriction. Then we have
. . Q, P,
Sl B mln{ Q1+Q3’ pl“f‘ pg },
* QB P3
S T PR e
and hence
. _ . Q) P,
Pi= Q@) minlgg By By
@3 P,

P; = (Q,+ Q3 - max{ G.1Qs P+ P, }.

Finally we need to find p,'s for je J|\UJ3; subject to 21),~=PI, ;p,~=P§. This
1€ €SS

can be done by distributing P] and P3 to »;'s proportional to p;'s within each index set

Jy and Js, respectively. Thus we have

qij, ) for je J,UJ,,
* p ] .
« Pl —=%, for je],,
p;= ];1 bj
* /ﬁj .
Py —=>=, for j€7;.
&b
We next consider the two sample product multinomial model. Suppose the first row has

multinomial distribution with (% ; ¢;,...,¢, and the second row has multinomial distribution
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with (m ; py,...,ps), where 2(1,: 2pj=1. We consider this problem under the

restriction (R1). The likelihood function is proportional to L ;= ﬁ D

the one-sample case, let
Ji = {#j=1,..,i0, P;,— 4;<0},
J2 {(7/j=1,....70, Dj— a0}

P,= ];ipj, Q.= };XQ,'.

[

I

i

and, for 7=1,...,4,

mp, nq,

Similarly for

There occur violations on index set J, and J4;. As we discussed earlier in the one-sample

product multinomial model case we can show that 1);20; for jej,\UJ,.

p;=gq; for j&J,UJ,.
Now L5 can be rewritten as

PInFI\PmP\ n @y 6\ pr 11 ’_"571_; jfzzﬁg‘ na;

_P;nPTPgnP'\ nQ’\ 67 Hpmb+nq, pjmﬁ+na,’

and the restrictions become

Pi+ Pyt 2o+ 20,=1 Qi+ Qs+ Za,+ Za,=1,

0< Py, P3<1, 0<Q,Q5¢41,
P1<Q,,P3=2Q; P, +P3=0,+Q;.
Let
A———I—ZD;—ZD,-and P1=%,P3_ Ql
1€/, €7,

Then we have 0< Py, P3, Qi, Q3 <1 and P,+P3;=0Q,+Q3, P;sQ;,

Ps Ql

, Q3=

The likelihood function L 3 can be written as

(PY" Q) " Py " Q" T
mﬁ+nq,Hpmp+nq,Am(F\+ﬁ+n(6\+m

= (Pi)m 1—PD" 3(Qi)" (1— ')" :
mﬁ+nq,Hpmp+nq,Am(F\+F7+n(6\+m

Then we fix

Q3
A -

P3>Q,.

The likelihood function is consisted of two parts; the first part is binomial problem and the
second part is an ordinary multinomial problem. Moreover, the restriction does not relate the
two parts to each other. Hence we can maximize the likelihood function by maximizing the



Estimation of Multinomial Parameters with Crossing Point 953

two parts separately. The first part is just a bioassay problem as discussed in Example 1.5.1
of Robertson, Wright and Dykstra(1988). Then the restricted maximum likelihood estimates of

P,, Py and p;, q; for jeJ,\UJ, are given by P}, P3 and p;, q;, where

. mp,-+nc}j

p; = q;= for jeJ,UJ,

m+ n
P, .
Pr: Pl—l— pg if P1>Q1
mP,+mPs+n Q,+n 0,y b
P, .
P,= ?1_{_ P3 lf P3>Q3
3 mpg-!-n @3 if P<Q
mP1+m P3+n @1+7l @3 ' : 3
@1 , :
—_—— if P <
Q,— 0,+ 0, 1 1@
=
mPitnQy o opo
mpﬁ-m p3+n Q,+n Qs
@3 . .
—— if P;<
Q _ ©1+ @3 1 3 Q3
3 mP3+n @3 if P>Q
mpl+m P3+n @1+n @3 ' 3 3
and
A =(1’— ;210,4—];;‘,-). and | |
Pi=P,-A", P;=P3-A", Qi=Q,-A", Q;=Q;-A".
Consequently,
mﬁfl—naj .
——————m+71 , for je J,UJ,,
* pj -
pr=1F1 I for j&],,

Py —=—*t—, for je],,
pIgY

and
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m?)j+n?1,~
m+n
* Q, .
gt = Q1< ~, for je,
i 2 q
JEJ

j

, for j&J,UJ,,

A

* Q‘ .
Qy —~= =, for j=],
PR
3

Finally we consider the binomial model which can be considered as column product
multinomial model. Then the restriction becomes

p,-z—% for j=1,...,7, and ij—% for j=jo+1, ..., k.

The estimation procedure is very straightforward and then we have
max { Zi,—%—} for j=1,...,7,,

pi= .
" | min{ p,,—%} for j=jo+1,...k

Now we discuss about the estimation procedure for the case of unknown crossing point. We

assume  two-sample product multinomial model. Let 1= inf{# ) = q it and
o= inf{; 5,-£ cA]j}. We note that ;7,<j, and for some j={j,,...,72} we may have

13,—( &\j or 1/5]‘> /q\j. Let L3 ; be the likelihood when the crossing point is assumed to be J.
Then the maximum likelihood estimator, 7o, for 7, is given by J7,= argmax ; <;<;,{L 3 ;}.
Then the maximum likelihood estimation of cell probabilities can be obtained by assuming

jo= }0 and appeal to the estimation procedure given above. For other sampling models we

may applied the similar procedure.
4. An Example

We analyze a real data to illustrate the estimation procedure discussed in sections 2 and 3.
131 prospective students are admitted initially to the College of Engineering, Pusan University
of Foreign Studies on regular admission program and tabulated in Table 1 according to their
high school ranks. There are 15 scales in high school ranks. The smaller the number, the
higher the school rank. The second column of Table 1 shows the number of enrolled students
for each high school rank. A school official claims that large portion of the newly admitted
student with high-school rank 6 or higher tends not to attend the university. We use the

same notation as in sections 2 and 3. Then j,=6, we have J,=1{1,2,3,4,5}, J,= {6}
J3=1{7,8,9,10}, and [ = ¢.

Since violation occurs on J,= {6}, we have pg=gs= lg%%%g =(.242308. We note
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that
P = (7+8+13+18+29) _ (24+2)
! 131 ’ 3 131 ’
0, = (4+3+3+7+23) D,= (45+7+3+1)
! 129 ’ 3 129.
Now need to find P,, P, @, and @3 which maximize
P}Sl FTP§31 F;TQ 129 GTQ:?Q gy

subject to

P, +P3=Q,+Q;=1-0.242308 and P,2Q,, P3=<@s.

We can show that

P} =0.562643, P3=0.195050, Q]=0.315705, and Q;=0.441987.

Finally p;'s and ¢;’'s on J;

and J; are listed in Table 1.

Table 1. Computational Details

*

*

mil 7 P q ? q
1 7 4 10.053435115/0.031007752! 0.052513328 |0.031570513
2 8 3 10.061068702|0.023255814| 0.060015232 |0.023677885
3 | 13| 3 10.099236641|0.023255814} 0.097524752 |0.023677885
4 | 18 | 7 ]0.137404580|0.054263566| 0.135034273 0.055248397
5 129 | 23 10.221374046|0.178294574} 0.217555217 |0.181530449
6 | 30 | 33 [0.229007634|0.255813953 0.242307692 |0.242307692
7 124 | 45 |0.183206107|0.348837209| 0.180045697 {0.355168269
8 | 2 1 7 10.015267176|0.054263566| 0.015003808 |0.055248397
9 3 0 0.023255814 0 0.023677885
10 1 0 0.007751938 0 0.007892628

total| 131 | 129 1 1 1 1

5. Concluding Remarks

955

Frequently we may impose some restrictions on probability density functions such as
monotonicity. Finding a crossing point with monotonicity restriction might be of great interest
and even challenging. On the other hand, one possible generalization of the result obtained In
this paper is extending to the problem of general probability density functions.

In this paper we are not dealing with testing problems. Possible interests might be put on
jo>J Cor 7o<J, 7o#). This testing problem

testing Hg : jo=J (J is known ) against H, :
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is quite similar to the testing problem of unimodality with unknown peak. See Shi(1989).
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