• Title/Summary/Keyword: maximal ratio combining (MRC)

Search Result 69, Processing Time 0.021 seconds

Performance Analysis of Diversity Received DS-CDMA/MDPSK Signals in m-distribution and Rician Fading Environments (m-분포 페이딩과 라이시안 페이딩 환경 하에서의 다이버시티 수신된 DS-CDMA / MDPSK 신호의 성능 분석)

  • 이정도;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.191-198
    • /
    • 1998
  • The error are equation of DC-CDMA/MDPSK signal has been derived in m-distribution and Rician fading channels. Predeteception multipath MRC(Maximal Ratio Combining) diversity technique is employed for improving the bit error rate performance. The suitability of modeling a Rician fading environment by properly chosen m-distribution model is examined. Using the derived equation the error performance has been evaluated and shown in figures as a function of PN code sequence length(N), user number(U), multipath number(P), fading index(m), Rician factor(K), number of diversity branches(L) and ($E_b/N_o$). The results show that the error performance in Rician fading agrees well with that in m-distribution fading as fading becomes weak and as user number(U) increases and as multipath number(P) increases and diversity number(L) increases.

  • PDF

Performance Improvement of 16 QAM Signal in PCN Channel

  • Kim, Eon-Gon;Oh, Chang-Heon;Cho, Sung-Joon
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.10-16
    • /
    • 1996
  • In this paper, we have analyzed the error performance of the optimum threshold detection(OTD) of 16 QAM signal in the Rician fading channel with and without the maximal ratio combining(MRC) diversity technique in the presence of cochannel Rayleigh interference. An also the error performance of OTD is compared to that of conventional threshold detection(CTD) in the Rician fading channel in the presence of cochannel Rayleigh interference. With the result of analysis, it is found that there exists a synergistic effect due to both MRC diversity and optimum threshold detection in the Rician fading channel in the presence of cochannel Rayleigh interference.

  • PDF

Minimizing Sensing Decision Error in Cognitive Radio Networks using Evolutionary Algorithms

  • Akbari, Mohsen;Hossain, Md. Kamal;Manesh, Mohsen Riahi;El-Saleh, Ayman A.;Kareem, Aymen M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2037-2051
    • /
    • 2012
  • Cognitive radio (CR) is envisioned as a promising paradigm of exploiting intelligence for enhancing efficiency of underutilized spectrum bands. In CR, the main concern is to reliably sense the presence of primary users (PUs) to attain protection against harmful interference caused by potential spectrum access of secondary users (SUs). In this paper, evolutionary algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA) are proposed to minimize the total sensing decision error at the common soft data fusion (SDF) centre of a structurally-centralized cognitive radio network (CRN). Using these techniques, evolutionary operations are invoked to optimize the weighting coefficients applied on the sensing measurement components received from multiple cooperative SUs. The proposed methods are compared with each other as well as with other conventional deterministic algorithms such as maximal ratio combining (MRC) and equal gain combining (EGC). Computer simulations confirm the superiority of the PSO-based scheme over the GA-based and other conventional MRC and EGC schemes in terms of detection performance. In addition, the PSO-based scheme also shows promising convergence performance as compared to the GA-based scheme. This makes PSO an adequate solution to meet real-time requirements.

Performance Analysis of MC-DS/CDMA System with Phase Error and Hybrid SC/MRC-(2/3) Diversity (위상 에러와 하이브리드 SC/MRC-(2/3)기법을 고려한 MC-DS/CDMA 시스템의 성능 분석)

  • Kim Won-Sub;Park Jin-Soo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.835-842
    • /
    • 2004
  • In this paper, we have analyzed the MC-DS/CDMA system with input signal synchronized completely through adjustment of the gain in the PLL loop, by using the hybrid SC/MRC-(2/3) technique, which is said to one of the optimal diversity techniques under the multi-path fading environment, assuming that phase error is defined to the phase difference between the received signal from the multi-path and the reference signal in the PLL of the receiver. Also, assuming that the regarded radio channel model for the mobile communication is subject to the Nakagami-m fading channel, we have developed the expressions and performed the simulation under the consideration of various factor, in the MC/DS-CDMA system with the hybrid SC.MRC-(2/3) diversity method, such as the Nakagami fading index(m), $the\;number\;of\;paths\;(L_p),$ the number of hybrid SC.MRC-(2/3) $diversity\;branches\;(L,\;L_c),$ the number of users (K), the number of subcarriers (U), and the gain in the PLL loop. As a result of the simulation, it has been confirmed that the performance improvement of the system can be achieved by adjusting properly the PLL loop in order for the MC/DS-CDMA system with the hybrid SC/MRC-(2/3) diversity method to receive a fully synchronized signal. And the value of the gain in the PLL loop should exceed 7dB in order for the system to receive the signal with prefect synchronization, even though there might be a slight difference according to the values of the fading index and the spread processing gain of the subcarrier.

Performance of W-CDMA System with SOVA-based Turbo Decoder in ITU-R Realistic Channel (ITU-R 실측채널에서 SOVA 기반의 터보부호를 적용한 W-CDMA 시스템의 성능 분석)

  • Jeon Jun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1613-1619
    • /
    • 2004
  • Turbo codes of long block sizes have been known to show very good performance in an AWGN channel and the turbo code has been strongly recommended as error correction code for W-CDMA in 3GPP(3rd Generation Partnership Project). Recently, turbo codes of short block sizes suitable for real time communication systems have attracted a lot of attention. Thus, in this paper we consider the turbo code of 1/3 code rate and short frame size of 192 bits in ITU-R channel model. We analyzed the performance of W-CDMA systems of 10MHz bandwidths employing RAKE receiver with not only MRC diversity but also SOVA-based turbo code.

Performance Evaluation of TCP in Hybrid Satellite-Terrestrial Relay Networks (하이브리드 위성-지상 중계기 네트워크에서 TCP 성능 분석)

  • Lee, Kyu-Hwan;Jang, Dong-Hyuk;Lee, Sung-Jae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.121-127
    • /
    • 2017
  • In the land mobile satellite (LMS) communication, a hybrid satellite-terrestrial relay networks (HSTRNs) using a maximal ratio combining (MRC) scheme are widely used to enhance the quality of signal from a satellite. In this paper, we derive equations for the TCP throughput and the spectral efficiency in the HSTRN and analyze results of the performance evaluation for TCP in various environments. In the simulation results, it is shown that increasing the number of terrestrial relays can enhance the TCP throughput and spectral efficiency thanks to the MRC scheme. However, the usage of the static number of terrestrial relays considering no channel states would cause the overhead. Furthermore, it has a limitation to enhance the network performance by only MRC scheme in HSTRN because the TCP performance is sensitive to the packet los rate. Therefore, we discuss the possible solutions that can additionally enhance the network performance and reduce the overhead.

Performance Analysis of Relay applied to Energy Harvesting (에너지 하베스팅을 적용한 중계기의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.67-72
    • /
    • 2014
  • In this paper, an energy harvesting scheme is applied in the cooperative communication. The proposed scheme uses an energy harvesting relay in which the relay harvests the energy from the source node and transfers to the power form in forwarding the received data to the destination node. The well-known maximal ratio combining (MRC) technique is applied to increase the diversity gain at the destination. Therefore, with applying the proposed energy harvesting scheme, the limited power at the relay is solved, and the operation efficiency of the network and the mobile devices is improved. Finally, performance of the proposed protocol is analyzed in terms of bit error rate, outage probability, power collection efficiency.

Performance Analysis of MFSK Signal using Reed-Solomon / Convolutional Concatenated Coding and MRC Diversity Techniques in m-distributed Fading Environment (m-분포 페이딩 환경에서 Reed-Solomon/컨벌루션 연접 부호화 기법과 MRC 다이버시티 기법을 함께 이용하는 MFSK 신호의 성능 해석)

  • 이희덕;강희조;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.2
    • /
    • pp.10-19
    • /
    • 1994
  • The error rate equation of Reed-Solomon/Convoutional concatenated coded MFSK signal transmitted over m-distributed fading channel with Additive White Gaussian Noise (AWGN) and re- ceived with Maximal Ratio Combining (MRC) diversity has been derived. The bit error probability has been evaluated using the derived equation and shown n figures as a function of signal to noise ratio, fading index and the number of diversity branches. From the results obtained, we have shown that the bit error probability of MFSK signal is improved by using coding technique in fading environment. The concatenated coding technique is found to be very effective. When concatenated coding and MRC diversity reception techniques are used together in fading environ- ment, the improvement of error performance attains about 6.6 dB in terms of SNR as compared with that of employing only concatenated coding case.

  • PDF

A Downlink Spectral Efficiency Improvement Scheme Using Intercell Cooperative Spatial Multiplexing and Beamforming (셀 간 협조적 공간 다중화 및 빔포밍을 이용한 하향링크 전송 효율 증대 방안)

  • Chang, Jae-Won;Jin, Gwy-Un;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.45-52
    • /
    • 2008
  • In typical cellular systems using frequency reuse scheme, the terminal suffers a performance degradation due to the intercell interference signals from adjacent cells as the terminal moves toward the cell boundary. In this paper, a signal transmission and reception scheme which achieve spatial multiplexing and beamforming gain from a distributed MIMO (multiple-input multiple-output) channel using multiple-antenna terminal is proposed for the spectral efficiency enhancement in a multi-cell downlink environment, when geographically separated base stations cooperatively transmit signals. In particular, we analyze the effective signal-to-interference ratio and spectral efficiency of the proposed scheme for different frequency reuse patterns and for varying numbers of receive antennas, and compare with the performance of the MRC (maximal ratio combining) reception scheme in typical cellular systems. We evaluate the amount of transmission efficiency of the scheme by comparing the performance near the cell boundary where the strong intercell interference is experienced.

Enable Secondary User Spectrum Access in Cooperative Communication Scheme with Rayleigh Fading Channel (레일리 페이딩 채널에서 2차 사용자 스펙트럼 접근이 가능한 협력통신 기법)

  • Kim, Lyum;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.113-119
    • /
    • 2010
  • In this paper, the considered cognitive radio system has a pair of PT-PR and a pair of ST-SR. In first time slot(1 Phase), PT broadcast signal $x_p$ to PR, ST and SR. Then, each receivers(PR, ST, SR) decode received signal $x_p$. In second time slot(2 Phase), ST combine decoded signal ${x_p}^{\prime}$ and signal $x_s$, and it broadcast combined signal to PR and SR. PR and SR decode combined signal. At this time, PR can achieve diversity gain, due to using MRC, it combine 'received and decoded signal ${x_p}^{\prime}$ at 1 phase' and 'detected signal $x_p$ at 2 phase'. SR use linear combining technique and it can obtain $x_s$.