• 제목/요약/키워드: maximal homomorphism

검색결과 8건 처리시간 0.023초

On Partitioning and Subtractive Subsemimodules of Semimodules over Semirings

  • Chaudhari, Jaiprakash Ninu;Bond, Dipak Ravindra
    • Kyungpook Mathematical Journal
    • /
    • 제50권2호
    • /
    • pp.329-336
    • /
    • 2010
  • In this paper, we introduce a partitioning subsemimodule of a semimodule over a semiring which is useful to develop the quotient structure of semimodule. Indeed we prove : 1) The quotient semimodule M=N(Q) is essentially independent of choice of Q. 2) If f : M ${\rightarrow}$ M' is a maximal R-semimodule homomorphism, then $M/kerf_{(Q)}\;\cong\;M'$. 3) Every partitioning subsemimodule is subtractive. 4) Let N be a Q-subsemimodule of an R-semimodule M. Then A is a subtractive subsemimodule of M with $N{\subseteq}A$ if and only if $A/N_{(Q{\cap}A)}\;=\;\{q+N:q{\in}Q{\cap}A\}$ is a subtractive subsemimodule of $M/N_{(Q)}$.

On Partitioning and Subtractive Ideals of Ternary Semirings

  • Chaudhari, Jaiprakash Ninu;Ingale, Kunal Julal
    • Kyungpook Mathematical Journal
    • /
    • 제51권1호
    • /
    • pp.69-76
    • /
    • 2011
  • In this paper, we introduce a partitioning ideal of a ternary semiring which is useful to develop the quotient structure of ternary semiring. Indeed we prove : 1) The quotient ternary semiring S/$I_{(Q)}$ is essentially independent of choice of Q. 2) If f : S ${\rightarrow}$ S' is a maximal ternary semiring homomorphism, then S/ker $f_{(Q)}$ ${\cong}$ S'. 3) Every partitioning ideal is subtractive. 4) Let I be a Q-ideal of a ternary semiring S. Then A is a subtractive ideal of S with I ${\subseteq}$ A if and only if A/$I_{(Q{\cap}A)}$ = {q + I : q ${\in}$ Q ${\cap}$ A} is a subtractive idea of S/$I_{(Q)}$.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • 대한수학회지
    • /
    • 제51권6호
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.

A GENERALIZATION OF ω-LINKED EXTENSIONS

  • Wu, Xiaoying
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.725-743
    • /
    • 2022
  • In this paper, the concepts of ω-linked homomorphisms, the ω𝜙-operation, and DW𝜙 rings are introduced. Also the relationships between ω𝜙-ideals and ω-ideals over a ω-linked homomorphism 𝜙 : R → T are discussed. More precisely, it is shown that every ω𝜙-ideal of T is a ω-ideal of T. Besides, it is shown that if T is not a DW𝜙 ring, then T must have an infinite number of maximal ω𝜙-ideals. Finally we give an application of Cohen's Theorem over ω-factor rings, namely it is shown that an integral domain R is an SM-domain with ω-dim(R) ≤ 1, if and only if for any nonzero ω-ideal I of R, (R/I)ω is an Artinian ring, if and only if for any nonzero element α ∈ R, (R/(a))ω is an Artinian ring, if and only if for any nonzero element α ∈ R, R satisfies the descending chain condition on ω-ideals of R containing a.

BRAUER GROUP OVER A KRULL DOMAIN

  • Lee, Heisook
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.135-137
    • /
    • 1989
  • Let R be a Krull domain with field of fractions K. By Br(R) we denote the Brauer group of R. Studying the Kernel of the homomorphism Br(R).rarw.Br(K), Orzech defined Brauer groups Br(M) for different categories M of R-modules [4]. In this paper we show that an algebra A in Br(D) is a maximal order in A K and that the map Br(D).rarw. Br(K) is one to one. We note here few conventions. All rings are Krull domains and all modules will be unitary. By Z we donote the set of height one prime ideals of a Krull domain.

  • PDF

The Fuzzy Jacobson Radical of a κ-Semiring

  • Kim, Chang-Bum
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.423-429
    • /
    • 2007
  • We define and study the fuzzy Jacobson radical of a ${\kappa}$-semiring. Also it is shown that the Jacobson radical of the quotient semiring R/FJR(R) of a ${\kappa}$-semiring by the fuzzy Jacobson radical FJR(R) is semisimple. And the algebraic properties of the fuzzy ideals FJR(R) and FJR(S) under a homomorphism from R onto S are also discussed.

THE MULTILEVEL SECURITY PROBLEM OVER CLASS SEMIGROUPS OF IMAGINARY QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONGTAE
    • 호남수학학술지
    • /
    • 제28권2호
    • /
    • pp.185-196
    • /
    • 2006
  • A scheme based on the cryptography for enforcing multilevel security in a system where hierarchy is represented by a partially ordered set was first introduced by Akl et al. But the key generation algorithm of Akl et al. is infeasible when there is a large number of users. In 1985, MacKinnon et al. proposed a paper containing a condition which prevents cooperative attacks and optimizes the assignment in order to overcome this shortage. In 2005, Kim et al. proposed key management systems for multilevel security using one-way hash function, RSA algorithm, Poset dimension and Clifford semigroup in the context of modern cryptography. In particular, the key management system using Clifford semigroup of imaginary quadratic non-maximal orders is based on the fact that the computation of a key ideal $K_0$ from an ideal $EK_0$ seems to be difficult unless E is equivalent to O. We, in this paper, show that computing preimages under the bonding homomorphism is not difficult, and that the multilevel cryptosystem based on the Clifford semigroup is insecure and improper to the key management system.

  • PDF

환의 PRIME SPECTRUM에 관하여 (ON THE PRIME SPECTRUM OF A RING)

  • 김응태
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제12권2호
    • /
    • pp.5-12
    • /
    • 1974
  • 단위원을 가지는 하환환에 있어서의 Prime Spectrum에 관하여 다음 세가지 사실을 증명하였다. 1. X를 환 R의 prime spectrum, C(X)를 X에서 정의되는 실연적함수의 환, X를 C(X)의 maximal spectrum이라 하면 X는 C(X)의 prime spectrum의 부분공간으로서의 한 T-space로 된다. N을 환 R의 nilradical이라 하면, R/N이 regula 이면 X와 X는 위상동형이다. 2. f: R$\longrightarrow$R'을 ring homomorphism, P를 R의 한 Prime ideal, $R_{p}$, R'$_{p}$를 각각 S=R-P 및 f(S)에 관한 분수환(ring of fraction)이라 하고, k(P)를 local ring $R_{p}$의 residue' field라 할 때, R'의 prime spectrum의 부분공간인 $f^{*-1}$(P)는 k(P)(equation omitted)$_{R}$R'의 prime spectrum과 위상동형이다. 단 f*는 f*(Q)=$f^{-1}$(Q)로서 정의되는 함수 s*:Spec(R')$\longrightarrow$Spec(R)이다. 3. X를 환 S의 prime spectrum, N을 R의 nilradical이라 할 때, 다음 네가지 사실은 동치이다. (1) R/N 은 regular 이다. (2) X는 Zarski topology에 관하여 Hausdorff 공간이다. (3) X에서의 Zarski topology와 constructible topology와는 일치한다. (4) R의 임의의 원소 f에 대하여 f를 포함하지 않는 R의 prime ideal 전체의 집합 $X_{f}$는 Zarski topology에 관하여 개집합인 동시에 폐집합이다.폐집합이다....

  • PDF