• Title/Summary/Keyword: matrix methods

Search Result 2,914, Processing Time 0.03 seconds

A primal-dual log barrier algorithm of interior point methods for linear programming (선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법)

  • 정호원
    • Korean Management Science Review
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF

Improved Leakage Signal Blocking Methods for Two Channel Generalized Sidelobe Canceller

  • Kim, Ki-Hyeon;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-128
    • /
    • 2006
  • The two-channel Generalized Sidelobe Canceller (GSC) scheme suffers from the presence of leakage signal in the reference channel. The leakage signal is caused by the dissimilar impulse responses between microphones, and different paths from speech source to microphones. Such leakage is detrimental to speech enhancement of the GSC since the desired reference signal becomes corrupted. In order to suppress the signal leakage, two matrix injection methods are proposed. In the first method, a simple gain compensation matrix is used. In the second, a projection matrix for reducing the error between the actual and the ideal primary and reference signals, is used. This paper describes the performance degradation resulting from leakage, and proposes effective methods to resolve the problem. Representative experiments were conducted to demonstrate the effectiveness of the proposed methods on recorded speech and noise in an actual automobile environment.

  • PDF

Efficient Solving Methods Exploiting Sparsity of Matrix in Real-Time Multibody Dynamic Simulation with Relative Coordinate Formulation

  • Choi, Gyoojae;Yoo, Yungmyun;Im, Jongsoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1090-1096
    • /
    • 2001
  • In this paper, new methods for efficiently solving linear acceleration equations of multibody dynamic simulation exploiting sparsity for real-time simulation are presented. The coefficient matrix of the equations tends to have a large number of zero entries according to the relative joint coordinate numbering. By adequate joint coordinate numbering, the matrix has minimum off-diagonal terms and a block pattern of non-zero entries and can be solved efficiently. The proposed methods, using sparse Cholesky method and recursive block mass matrix method, take advantages of both the special structure and the sparsity of the coefficient matrix to reduce computation time. The first method solves the η$\times$η sparse coefficient matrix for the accelerations, where η denotes the number of relative coordinates. In the second method, for vehicle dynamic simulation, simple manipulations bring the original problem of dimension η$\times$η to an equivalent problem of dimension 6$\times$6 to be solved for the accelerations of a vehicle chassis. For vehicle dynamic simulation, the proposed solution methods are proved to be more efficient than the classical approaches using reduced Lagrangian multiplier method. With the methods computation time for real-time vehicle dynamic simulation can be reduced up to 14 per cent compared to the classical approach.

  • PDF

Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.159-165
    • /
    • 2005
  • This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

Linear system analysis via wavelet-based pole assignment (웨이블릿 기반 극점 배치 기법에 의한 선형 시스템 해석)

  • Kim, Beom-Soo;Shim, Il-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1434-1439
    • /
    • 2008
  • Numerical methods for solving the state feedback control problem of linear time invariant system are presented in this paper. The methods are based on Haar wavelet approximation. The properties of Haar wavelet are first presented. The operational matrix of integration and its inverse matrix are then utilized to reduce the state feedback control problem to the solution of algebraic matrix equations. The proposed methods reduce the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity and applicability of the proposed methods.

Two Method for Evaluation of the Dipole Moment Matrix Elements (쌍극자모멘트 행렬요소를 계산하는 두가지 방법)

  • Sangwoon Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.229-238
    • /
    • 1978
  • Two methods for evaluation of the dipole moment matrix elements are developed, one using the expansion method for spherical harmonics and the other the transformation method of the dipole moment matrix elements into overlap integrals for Mulliken. The numerical values of the dipole moment matrix elements evaluated by two methods are in agreement with each other.

  • PDF

Development of the KnowledgeMatrix as an Informetric Analysis System (계량정보분석시스템으로서의 KnowledgeMatrix 개발)

  • Lee, Bang-Rae;Yeo, Woon-Dong;Lee, June-Young;Lee, Chang-Hoan;Kwon, Oh-Jin;Moon, Yeong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • Application areas of Knowledge Discovery in Database(KDD) have been expanded to many R&D management processes including technology trends analysis, forecasting and evaluation etc. Established research field such as informetrics (or scientometrics) has utilized techniques or methods of KDD. Various systems have been developed to support works of analyzing large-scale R&D related databases such as patent DB or bibliographic DB by a few researchers or institutions. But extant systems have some problems for korean users to use. Their prices is not moderate, korean language processing is impossible, and user's demands not reflected. To solve these problems, Korea Institute of Science and Technology Information(KISTI) developed stand-alone type information analysis system named as KnowledgeMatrix. KnowledgeMatrix system offer various functions to analyze retrieved data set from databases. KnowledgeMatrix's main operation unit is composed of user-defined lists and matrix generation, cluster analysis, visualization, data pre-processing. Matrix generation unit help extract information items which will be analyzed, and calculate occurrence, co-occurrence, proximity of the items. Cluster analysis unit enable matrix data to be clustered by hierarchical or non-hierarchical clustering methods and present tree-type structure of clustered data. Visualization unit offer various methods such as chart, FDP, strategic diagram and PFNet. Data pre-processing unit consists of data import editor, string editor, thesaurus editor, grouping method, field-refining methods and sub-dataset generation methods. KnowledgeMatrix show better performances and offer more various functions than extant systems.