• Title/Summary/Keyword: matrix metalloproteinases-2

Search Result 268, Processing Time 0.032 seconds

Secretory Differentiation of Hamster Tracheal Epithelial Cells Increases Activation of Matrix Metalloproteinase-2

  • Shin, Chan-Young;Lee, Woo-Jong;Park, Kyu-Hwan;Ryu, Jae-Ryun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In chronic airway inflammatory diseases such as asthma and chronic bronchitis, it has been suggested that matrix metalloproteinases secreted from infiltrating neutrophil contribute the pathogenesis of the disease and have been a focus of intense investigation. We report here that hamster tracheal surface epithelial goblet cells (HTSE cells) produce matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2). Matrix metalloproteinase activities were investigated using [$^3H$]collagen-digestion assay and gelatin zymography. The subtype of matrix metalloproteinases expressed from HTSE cells was MMP-2 (gelatinase A), which was determined by Western blot with various subtype selective anti-matrix metalloproteinase antibodies. The MMP-2 and TIMP-2 cDNAs from HTSE cells were partially cloned by RT-PCR and they reveal more than 90% of sequence homology with those from human, rat and mouse. The collagenolytic activity was increased with the secretory differentiation of the HTSE cell and it was found that zymogen activation was responsible for the increased MMP-2 activity in HTSE cells. The results from the present study suggest that the metaplastic secretory differentiation of airway goblet cells may affect chronic airway inflammatory process by augmenting the zymogen activation of MMP-2.

Platelet-Activating Factor Enhances Experimental Pulmonary Metastasis of Murine Sarcoma Cells by Up-regulation of Matrix Metalloproteinases-9 Through NF-$\kappa$B-Dependent Pathway

  • Ko, Hyun-Mi;Back, Hae-Kyong
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.143-151
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) are capable of degrading extracellular matrix, a process that is necessary for angiogenesis, tumor invasion and metastasis. Platelet-activating factor (PAP) increases angiogenesis, tumor growth and metastasis through nuclear factor (NF)-$\kappa$B activation. Based on these facts, the involvement of MMPs in PAF-induced pulmonary metastasis was investigated in murine sarcoma cells, MMSV-BALB/3T3. Messenger RNA expression and enzymatic activity of MMP-9 were assessed by RT-PCR and zymography, and cell migration and metastasis were done for the detection of MMP-9 functional activity. PAP induced mRNA expression and enzymatic activity of MMP-9, and its effects were either inhibited by the PAP antagonist, WEB 2170 or by the NF-$\kappa$B inhibitor, parthenolide, or p65 antisense oligonucleotide in a dose-dependent manner. In addition, PAF induced promoter activity of MMP-9, which was inhibited by WEB 2170, phenanthroline, NAC, PDTC. These results indicate that PAF induces mRNA expression and enzymatic activity of MMP-9 in NF-$\kappa$B dependent manner. Cell migration assay showed that PAF induced MMSV-BALB/3T3 migration, and its effect was significantly inhibited by treatment with phenanthroline. PAF enhanced pulmonary metastasis of murine sarcoma cells, MMSV-BALB/3T3 was also reduced by phenanthroline. These results suggest that PAF-enhanced cell migration and pulmonary metastasis is mediated through the expression of MMP. In conclusion, It is suggested that PAF enhances pulmonary metastasis by inducing MMP-9 expression via the activation of NF-$\kappa$B.

  • PDF

Fructose 1.6-diphosphate Prevents Cyclooxygenase-2 and Matrix Metalloproteinases Expression by Inhibition of UVB-induced Signaling Cascades in HaCaT Keratinocytes (인체각질형성세포에서 Fructose 1,6-diphosphate의 자외선에 의해 유도되는 Cyclooxygenase-2 and Matrix Metalloproteinases의 발현억제기전)

  • Soo Mi, Ahn;Ji Hyun, Kim;Byeong Gon, Lee;Soo Hwan, Lee;Ih Seoup, Chang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.247-251
    • /
    • 2004
  • UV radiation exerts various influences in the skin, including photoaging and inflammation (1). The MMPs (Matrix metalloproteinases), which are induced by UV irradiation, can degrade matrix proteins, and these results in a collagen deficiency in photodamaged skin that leads to skin wrinkling. It has been known that the production of PGE$_2$ stimulates MMPs expression, and inhibits procollagen (2). Thus, it is possible that the induction of MMPs and the inhibition of matrix protein synthesis by UV -induced PGE$_2$ may play some role in UV-induced collagen deficiency in photoaged skin. Fructose-1,6-diphosphate (FDP), a glycolytic metabolite, is reported to have cytoprotective effects against ischemia and postischemic reperfusion injury of brain and heart, presumably by augmenting anaerobic carbohydrate metabolism (3). And also, FDP significantly prevent skin aging by decreasing facial winkle compared with vehicle alone after 6 months of use. We studied the mechanism of anti-aging effect of FDP on UVB-irradiated HaCaT keratinocyte model. FDP has protective role in UVB injured keratinocyte by attenuating prostaglandin E$_2$ (PGE$_2$) production and COX-2 expression. And FDP also suppressed UVB-induced MMP-2 expression. Further, to delineate the inhibition of UVB-induced COX-2 and MMPs expression with cell signaling pathways, treatment of FDP to HaCaT keratinocytes resulted in marked inhibition of UVB-induced phosphorylation of ERK1/2, JNK. It also prevents UV induced NFB translocation, which are activated by cellular inflammatory signal. Our results indicate that FDP has protecting effects in UV-injured skin aging by decreasing UVB-induced COX-2 and MMPs expression, which are possibly through blocking UVB-induced signal cascades.

Protective Effects of Prunus persica Flesh Extract (PPFE) on UV-Induced Oxidative Stress and Matrix Metalloproteinases Expression in Human Skin Cells

  • Park, Hyen-Joo;Park, Kwang-Kyun;Hwang, Jae-Kwan;Chung, Won-Yoon;Kim, Gi-Dae;Lee, Min-Ai;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • In our continuous efforts to procure the active materials from natural products in the protective effects of oxidative stress or UV damage to skin cells we found the Prunus persica flesh extract (PPFE) is considerable to meet the demand to protect the skin damage. PPFE attenuated cell damage induced by hypoxanthine-xanthine oxidase in cultured human keratinocytes, indicating that PPFE has the potential of the scavenging effect of reactive oxygen species (ROS) in human skin cell. Moreover, PPFE significantly suppressed UVA-induced ROS production determined by the oxidation of 2,7-dichlorodihydrofluorescein diacetate (DCFH) using FACS analysis. Additional study revealed that UVA irradiation of HaCaT human keratinocytes increased the gelatinolytic activities of matrix metalloproteinase-2, and -9 (MMP-2, -9) and mRNA expression of MMP-9 analyzing by a real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and these events were significantly suppressed by the treatment with PPFE. These results suggest that PPFE might be applicable as natural ingredients for skin antiaging agents via UV-induced ROS scavenging activity and suppression of MMP expression in the skin cells.

Ferment Red Ginseng Suppresses the Expression of Matrix Metalloproteinases in UVA-irradiated Human Dermal Fibroblast Cells (발효홍삼의 인간진피섬유모세포에서 UVA로 유도한 염증 및 기질단백분해효소 발현 억제 효능)

  • Lee, Keun-Hyeun;Jeong, Seung-Il;Lee, Chang-Hyun;Shin, Sang Woo;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Prolonged exposure to solar ultraviolet A (UVA) radiation has been known to cause premature skin aging (photo-aging). UVA radiation generates ROS thereby induce degenerative changes of skin such as degradation of dermal collagen, elastic fibers. Matrix metalloproteinases (MMPs), the proteolytic enzymes have been implicated as a major player in the development of UVA-induced photo-aging. Many studies have been conducted to block the harmful effects of UV radiation on the skin. Recently, we are interested in the availability of fermented red ginseng (FRG) as natural matrix metalloproteinases inhibitors (MMPIs). The efficacy difference between red ginseng and FRG has been compared. Both RG and FRG have no cytotoxic effects below the concentration of $300{\mu}g/ml$. Human dermal fibroblasts (HDFs) were pretreated with FRG or RG for 24h, followed by irradiation of UVA. Then, we measured the intracellular ROS production and the expression of MMP, $IL-1{\beta}$ at the mRNA level. We also examined the intracellular localization of $NF-{\kappa}B$ and MMP-9 on the FRG or RG treated and UVA-irradiated HDFs. FRG decreased the intracellular ROS production elicited by UVA. In addition, FRG decreased the mRNA expression of MMP-3, MMP-9, and $IL-1{\beta}$ more efficiently than RG. Furthermore, FRG suppressed the nuclear localization of $NF-{\kappa}B$, and the expression of MMP-9. Taken together, our results suggest that FRG is promising agents to prevent UVA-induced photo-aging by suppressing MMP expression and inflammation.

Silkworm pupal extracts attenuate interleukin-1β-induced expression of matrix metalloproteinases and inflammatory mediators in the SW1353 human chondrosarcoma cell line

  • Kamidi Rahul;HaeYong Kweon;Ji Hae Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.46 no.2
    • /
    • pp.60-66
    • /
    • 2023
  • Osteoarthritis (OA) is one of the most prevalent degenerative joint diseases and is more common in older and obese individuals. Silkworm male pupae exerts tonic effects by increasing testosterone secretion and the forced swimming time and muscle ratio increased in mice consuming silkworm pupae, which may be beneficial to the older population. Therefore, it will be beneficial to investigate the effects of silkworm pupal extracts (SPE) on OA. To confirm this effect, we prepared SPE in different solvents, and their ability to attenuate matrix metalloproteinases (MMPs) and inflammatory mediators (interleukin-6 [IL-6], interleukin-8 [IL-8] and tumor necrosis factor-α [TNF-α]) were evaluated in an interleukin-1β (IL-1β)-induced SW1353 human chondrosarcoma cell line. 70% ethanolic SPE outperformed the other solvents, reducing MMP-1 and MMP-3 expression by up to 53% and 13%, respectively. Further experiments were performed using 70% ethanolic SPE from three distinct pupation stages in males and females. SPE treatment alleviated MMP-1 expression (43.9-47.4%) regardless of pupation stage and sex. Among the inflammatory mediators, 70% ethanolic SPE alleviated IL-6 and TNF-α levels, and the concentrations thereof were lowest in the early-stage male SPE-treated group (43.15% and 56.74%, respectively). In conclusion, 70% ethanolic SPE may prevent IL-1β-induced osteoarthritis by inhibiting MMPs and inflammatory cytokines. Therefore, SPE is a potential therapeutic agent for the treatment of OA.

Inhibition of the expression on MMP-2, 9 and morphological changes via human fibrosarcoma cell line by 6,6'-bieckol from marine alga Ecklonia cava

  • Zhang, Chen;Li, Yong;Shi, Xiujuan;Kim, Se-Kwon
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.62-68
    • /
    • 2010
  • Matrix Metalloproteinases (MMPs) are a family of zinc-endopeptidases which can degrade extracellular matrix (ECM) components and play important roles in a variety of biological and pathological processes. 6,6'-bieckol isolated and characterized from an edible marine brown alga Ecklonia cava (EC), according to the comprehensive spectral analysis of MS and NMR data. Here the influence of 6,6'-bieckol on expressions of MMPs was examined by zymography and western blot analysis via human fibrosarcoma cell line (HT1080). It is shown that 6,6'-bieckol significantly down regulated the expressions of MMP-2 and -9 in dose-dependent manner. The influence of 6,6'-bieckol on the cell viability and cell behavior of HT1080 cells were also investigated, our dates shown that it suppressed the migration and 3D culture in HT1080 cells. Meanwhile, we explored several signal pathways which may contribute to this process, and found the suppressing of MMPs expressions in HT1080 cells might be due to the suppression of NF-${\kappa}B$ signal pathway.

Roles of Matrix Metalloproteinases on Intracellular Staphylococcus aureus Growth in Bronchial Epithelial Cell (황색포도알균의 감염에 따른 세포 내에서의 균의 증식과 Matrix Metalloproteinase (MMP)의 역할)

  • Min, Bo Ram;Lee, Young Mi;Park, Jae Seok;Choi, Won-Il;Kwon, Kun Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • Background: Staphylococcus aureus frequently colonizes and infects hospitalized patients. Respiratory infections with Staphylococcus aureus are common in patients with compromised airway defenses. However the mechanisms of S. aureus invasion from colonization to the epithelium are unclear. Cell invasion by S. aureus would require destruction of the extracellular matrix, which is believed to be the result of increased matrix metalloproteinases (MMP) activity. Methods: In this study, respiratory epithelial cells were infected with S. aureus. After removing the extracellular bacteria by washing, the internalized bacteria in the cells were assessed by counting the colonized forming units (CFUs). The cell adhesion proteins, dysadherin and E-cadherin, were evaluated by Western blotting. The MMPs in the bacterial invasion were evaluated by pretreating the cells with GM6001, a MMP inhibitor. Results: The internalization of S. aureus was found to be both time and dose dependent, and the increase in MMP 2 and 9 activity was also dependent on the incubation time and the initial amount of bacterial inoculation. The invasion of S. aureus was attenuated by GM6001 after 12 hours incubation with a multiply of infection (MOI)=50. The expression of dysadherin, a membrane protein, was increased in a time and dose dependent manner, while the expression of E-cadherin was decreased. Conclusion: MMPs may mediate the invasion of S. aureus into epithelial cells.

Purification of Progelatinase A (Matrix Metalloproteinase 2) and a Tissue Inhibitor of Metalloproteinase-2(TIMP-2) from T98G Human Glioblastoma Cells

  • Lee, Ho-Jae;Chung, Myung-Chul;Lee, Choong-Hwan;Chun, Hyo-Kon;Kho, Yung-Hee
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 1995
  • The Gelatinases (typeIV collagenases) are metalloproteinases that may play an important role in tumor invasion and metastasis. Progelatinase A was purified from a conditioned medium of T98G human glioblastoma cells. TIMP-2 complexed progelatinase A and free progelatinase A were separated by heparin affinity HPLC. The final product was homogeneous on SDS-PAGE, with a molecular weight of 64,000 daltons without reduction. TIMP-2 and free progelatinase A were separated from TIMP-2 complexed progelatinase A by reverse-phase HPLC in the presence of trifluoroacetic acid. TIMP-2 complexed progelatinase A was resistant to activation by p-aminophenyl mercuric acetate (APMA), and showed less than 20% of the activity of the TIMP-2 free active enzyme. TIMP-2 free progelatinase A was easily activated to the mature form with a molecular weight of 57,000 daltons by APMA and showed high activity compared to the TIMP-2 complexed enzyme.

  • PDF

Effects of matrix metallproteinases on dentin bonding and strategies to increase durability of dentin adhesion (상아질 접착에 대한 matrix metalloproteinase (MMP)의 영향과 이를 극복하기 위한 전략)

  • Lee, Jung-Hyun;Chang, Ju-Hea;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • The limited durability of resin-dentin bonds severely compromises the longevity of composite resin restorations. Resin-dentin bond degradation might occur via degradation of water-rich and resin sparse collagen matrices by host-derived matrix metalloproteinases (MMPs). This review article provides overview of current knowledge of the role of MMPs in dentin matrix degradation and four experimental strategies for extending the longevity of resin-dentin bonds. They include: (1) the use of broadspectrum inhibitors of MMPs, (2) the use of cross-linking agents for silencing the activities of MMPs, (3) ethanol wet-bonding with hydrophobic resin, (4) biomimetic remineralization of water-filled collagen matrix. A combination of these strategies will be able to overcome the limitations in resin-dentin adhesion.