• Title/Summary/Keyword: matrix mapping

Search Result 179, Processing Time 0.025 seconds

Speaker Adaptation in HMM-based Korean Isoklated Word Recognition (한국어 격리단어 인식 시스템에서 HMM 파라미터의 화자 적응)

  • 오광철;이황수;은종관
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.351-359
    • /
    • 1991
  • This paper describes performances of speaker adaptation using a probabilistic spectral mapping matrix in hidden-Markov model(HMM) -based Korean isolated word recognition. Speaker adaptation based on probabilistic spectral mapping uses a well-trained prototype HMM's and is carried out by Viterbi, dynamic time warping, and forward-backward algorithms. Among these algorithms, the best performance is obtained by using the Viterbi approach together with codebook adaptation whose improvement for isolated word recognition accuracy is 42.6-68.8 %. Also, the selection of the initial values of the matrix and the normalization in computing the matrix affects the recognition accuracy.

A Comparison Analysis of Various Approaches to Multidimensional Scaling in Mapping a Knowledge Domain's Intellectual Structure (지적 구조 분석을 위한 MDS 지도 작성 방식의 비교 분석)

  • Lee, Jae-Yun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.41 no.2
    • /
    • pp.335-357
    • /
    • 2007
  • There has been many studies representing intellectual structures with multidimensional scaling(MDS) However MDS configuration is limited in representing local details and explicit structures. In this paper, we identified two components of MDS mapping approach; one is MDS algorithm and the other is preparation of data matrix. Various combinations of the two components of MDS mapping are compared through some measures of fit. It is revealed that the conventional approach composed of ALSCAL algorithm and Euclidean distance matrix calculated from Pearson's correlation matrix is the worst of the compared MDS mapping approaches. Otherwise the best approach to make MDS map is composed of PROXSCAL algorithm and z-scored Euclidean distance matrix calculated from Pearson's correlation matrix. These results suggest that we could obtain more detailed and explicit map of a knowledge domain through careful considerations on the process of MDS mapping.

An Algorithm for One-to-One Mapping Matrix-star Graph into Transposition Graph (행렬-스타 그래프를 전위 그래프에 일-대-일 사상하는 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1110-1115
    • /
    • 2014
  • The matrix-star and the transposition graphs are considered as star graph variants that have various merits in graph theory such as node symmetry, fault tolerance, recursive scalability, etc. This paper describes an one-to-one mapping algorithm from a matrix-star graph to a transposition graph using adjacent properties in graph theory. The result show that a matrix-star graph $MS_{2,n}$ can be embedded in a transposition graph $T_{2n}$ with dilation n or less and average dilation 2 or less.

PROMISE: A QR Code PROjection Matrix Based Framework for Information Hiding Using Image SEgmentation

  • Yixiang Fang;Kai Tu;Kai Wu;Yi Peng;Yunqing Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.471-485
    • /
    • 2023
  • As data sharing increases explosively, such information encoded in QR code is completely public as private messages are not securely protected. This paper proposes a new 'PROMISE' framework for hiding information based on the QR code projection matrix by using image segmentation without modifying the essential QR code characteristics. Projection matrix mapping, matrix scrambling, fusion image segmentation and steganography with SEL(secret embedding logic) are part of the PROMISE framework. The QR code could be mapped to determine the segmentation site of the fusion image as a binary information matrix. To further protect the site information, matrix scrambling could be adopted after the mapping phase. Image segmentation is then performed on the fusion image and the SEL module is applied to embed the secret message into the fusion image. Matrix transformation and SEL parameters should be uploaded to the server as the secret key for authorized users to decode the private message. And it was possible to further obtain the private message hidden by the framework we proposed. Experimental findings show that when compared to some traditional information hiding methods, better anti-detection performance, greater secret key space and lower complexity could be obtained in our work.

Camera Calibration with Two Calibration Planes and Oblique Coordinate Mapping (두 보정면과 사교좌표 매핑을 이용한 카메라 보정법)

  • Ahn, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.119-124
    • /
    • 1999
  • A method to find the line of sight ray in space which corresponds to a point in an image plane is presented. The line of sight ray is defined by two points which are the intersections between the two calibration planes and the sight ray. The intersection point is found by the oblique coordinate mapping between the image plane and the calibration plane in the space. The proposed oblique coordinate mapping method has advantages over the transformation matrix method in the required memory space and computation time.

  • PDF

Identification of Superior Single Nucleotide Polymorphisms (SNP) Combinations Related to Economic Traits by Genotype Matrix Mapping (GMM) in Hanwoo (Korean Cattle)

  • Lee, Yoon-Seok;Oh, Dong-Yep;Lee, Yong-Won;Yeo, Jung-Sou;Lee, Jea-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1504-1513
    • /
    • 2011
  • It is important to identify genetic interactions related to human diseases or animal traits. Many linear statistical models have been reported but they did not consider genetic interactions. Genotype matrix mapping (GMM) has been developed to identify genetic interactions. This study uses the GMM method to detect superior SNP combinations of the CCDC158 gene that influences average daily gain, marbling score, cold carcass weight and longissimus muscle dorsi area traits in Hanwoo. We evaluated the statistical significance of the major SNP combinations selected by implementing the permutation test of the F-measure. The effect of g.34425+102 A>T (AA), g.8778G>A (GG) and g.4102+36T>G (GT) SNP combinations produced higher performance of average daily gain, marbling score, cold carcass weight and the longissimus muscle dorsi area traits than the effect of a single SNP. GMM is a fast and reliable method for multiple SNP analysis with potential application in marker-assisted selection. GMM may prospectively be used for genetic assessment of quantitative traits after further development.

A Parallelising Algortithm for Matrix Arithmetics of Digital Signal Processings on VLIW Simulator (VLIW 시뮬레이터 상에서의 디지털 신호처리 행렬 연산에 대한 병렬화 알고리즘)

  • Song, Jin-Hee;Jun, Moon-Seog
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.1985-1996
    • /
    • 1998
  • A parallelising algorithm for partitioning and mapping methods of matrix/vector multiplication into linear processor array/VLW simulator is presented in this paper. First we discuss the mapping methods for input matrix or vector into the arbitrarily size of processor arrays. Then, we show partitioning the algorithmss of the large size of computational problem into the size of the processor array. We execute the algorithm on VLIW simuhator and show to effectiviness of algorithm. The result which we achived better parallelising performance on our VLIW simulator dsign than on linear processor array.

  • PDF

An Analytical Evaluation of 2D Mesh-connected SIMD Architecture for Parallel Matrix Multiplication (2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적 성능 분석)

  • Kim, Cheong-Ghil
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Matrix multiplication is a fundamental operation of linear algebra and arises in many areas of science and engineering. This paper introduces an efficient parallel matrix multiplication scheme on N ${\times}$ N mesh-connected SIMD array processor, called multiple hierarchical SIMD architecture (HMSA). The architectural characteristic of HMSA is the hierarchically structured control units which consist of a global control unit, N local control units configured diagonally, and $N^2$ processing elements (PEs) arranged in an N ${\times}$ N array. PEs are communicating through local buses connecting four adjacent neighbor PEs in mesh-torus networks and global buses running across the rows and columns called horizontal buses and vertical buses, respectively. This architecture enables HMSA to have the features of diagonally indexed concurrent broadcast and the accessibility to either rows (row control mode) or columns (column control mode) of 2D array PEs alternately. An algorithmic mapping method is used for performance evaluation by mapping matrix multiplication on the proposed architecture. The asymptotic time complexities of them are evaluated and the result shows that paralle matrix multiplication on HMSA can provide significant performance improvement.

  • PDF

The Mapping Theory between Current/Voltage and Instantaneous Powers in Three-phase Systems (3상 계통에서 전류/전압과 순시전력간의 맵핑이론)

  • 김효성;최재호
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.228-232
    • /
    • 1997
  • The relation between instantaneous active/reactive powers and currents is defined by voltage mapping matrix in three-phase four-wire systems. Control strategies for an active filter without energy storage components are proposed on the basis of mapping matrices. It can compensate for the zero-sequence current, irrespectively of whether or not a zero-sequence voltage exists in a three-phase four-wire system.

  • PDF

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.