• Title/Summary/Keyword: matrix learning

검색결과 352건 처리시간 0.024초

오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구 (Comparison of deep learning-based autoencoders for recommender systems)

  • 이효진;정윤서
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.329-345
    • /
    • 2021
  • 추천 시스템은 고객의 데이터를 이용하여 개인 맞춤화된 상품을 추천한다. 추천 시스템은 협업 필터링, 콘텐츠 기반 필터링 그리고 이 두 가지를 합친 하이브리드 방법의 세 가지로 크게 나누어진다. 이 연구에서는 딥러닝 방법론에 기초한 오토인코더를 이용한 추천 시스템에 대한 소개와 그 모형들의 비교 연구를 진행한다. 오토인코더는 데이터 행렬에 0이 많은 경우의 문제를 효과적으로 다룰 수 있는 딥러닝 기반의 비지도학습 모형이다. 이 연구에서는 세 개의 실제 데이터를 이용하여 다섯 가지 종류의 오토인코더 기반 모형들을 비교한다. 처음의 세 개 모형은 협업 필터링에 속한 모형이고 나머지 두 개의 모형은 하이브리드 모형이다. 실제 데이터는 고객의 평점 데이터이고, 대부분의 평점이 없어서 희박성 비율이 높다는 특징이 있다.

Recovery of Lost Speech Segments Using Incremental Subspace Learning

  • Huang, Jianjun;Zhang, Xiongwei;Zhang, Yafei
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.645-648
    • /
    • 2012
  • An incremental subspace learning scheme to recover lost speech segments online is presented. Our contributions in this work are twofold. First, the recovery problem is transformed into an interpolation problem of the time-varying gains via nonnegative matrix factorization. Second, incremental nonnegative matrix factorization is employed to allow online processing and track the evolution of speech statistics. The effectiveness of the proposed scheme is confirmed by the experiment results.

One-Class Support Vector Learning and Linear Matrix Inequalities

  • Park, Jooyoung;Kim, Jinsung;Lee, Hansung;Park, Daihee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.100-104
    • /
    • 2003
  • The SVDD(support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the kernel feature space in order to distinguish a set of normal data from all other possible abnormal objects. The major concern of this paper is to consider the problem of modifying the SVDD into the direction of utilizing ellipsoids instead of balls in order to enable better classification performance. After a brief review about the original SVDD method, this paper establishes a new method utilizing ellipsoids in feature space, and presents a solution in the form of SDP(semi-definite programming) which is an optimization problem based on linear matrix inequalities.

A Sparse Target Matrix Generation Based Unsupervised Feature Learning Algorithm for Image Classification

  • Zhao, Dan;Guo, Baolong;Yan, Yunyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2806-2825
    • /
    • 2018
  • Unsupervised learning has shown good performance on image, video and audio classification tasks, and much progress has been made so far. It studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. Many promising deep learning systems are commonly trained by the greedy layerwise unsupervised learning manner. The performance of these deep learning architectures benefits from the unsupervised learning ability to disentangling the abstractions and picking out the useful features. However, the existing unsupervised learning algorithms are often difficult to train partly because of the requirement of extensive hyperparameters. The tuning of these hyperparameters is a laborious task that requires expert knowledge, rules of thumb or extensive search. In this paper, we propose a simple and effective unsupervised feature learning algorithm for image classification, which exploits an explicit optimizing way for population and lifetime sparsity. Firstly, a sparse target matrix is built by the competitive rules. Then, the sparse features are optimized by means of minimizing the Euclidean norm ($L_2$) error between the sparse target and the competitive layer outputs. Finally, a classifier is trained using the obtained sparse features. Experimental results show that the proposed method achieves good performance for image classification, and provides discriminative features that generalize well.

Matching Matrix를 사용하여 운전자와 승객의 관계를 반영한 강화학습 기반 유동적인 가격 책정 체계 (Dynamic Pricing Based on Reinforcement Learning Reflecting the Relationship between Driver and Passenger Using Matching Matrix)

  • 박준형;이찬재;윤영
    • 한국ITS학회 논문지
    • /
    • 제19권6호
    • /
    • pp.118-133
    • /
    • 2020
  • 최근 통합교통서비스(Mobility-as-a-Service)의 개념을 도입하여 이용자들의 이동성과 접근성을 향상시키고자 하는 연구가 진행되고 있다. 특히 카셰어링, 택시 등 에 대해 수요와 공급에 따라 지역을 구분하여 가격을 책정하는 유동적인 가격 책정 전략을 도입하여 단일 요금제가 가지는 서비스 기피 등의 문제를 해결함과 동시에 기업과 운전자들의 수익성에 긍정적인 영향을 줄 수 있을 것으로 기대되고 있다. 본 연구에서는 승객과 운전자간의 배차거리, 승객의 운행거리, 승객의 목적지에 대한 HDBSCAN 알고리즘을 통해서 정밀하게 인식된 수요 밀집지역, 승객과 운전자가 생각하는 선호가격을 고려하여 승객과 운전자의 입장에서 Matching Matrix를 생성한다. 이를 조합하고 보상에 반영하여, 강화학습이 더욱더 현실적인 유동적인 가격 책정전략을 도출할 수 있는 새로운 방법론을 제안한다.

학습기능을 이용한 Z. Cao의 퍼지추론방식 (Z. Cao's Fuzzy Reasoning Method using Learning Ability)

  • 박진현;이태환;최영규
    • 한국정보통신학회논문지
    • /
    • 제12권9호
    • /
    • pp.1591-1598
    • /
    • 2008
  • 과거 Z. Cao는 Relation matrix를 사용한 정밀한 추론이 가능한 NFRM(New fuzzy reasoning method)을 제안하였다. 이는 추론의 규칙 수가 적음에도 불구하고 Mamdani의 퍼지추론방식에 비하여 좋은 성능을 보였다. 그러나 정밀한 추론을 위하여 relation maoix는 시행착오법을 사용하여 구하고, 이는 많은 시간과 노력이 필요하다. 본 연구에서는 이러한 relation matrix를 구하기 위하여 시행착오법에 의해 소요되는 많은 시간과 노력을 줄이고, 더욱 정밀한 추론 성능의 개선을 위하여 경사감소학습법을 사용한 학습기능을 갖는 Z. Cao의 퍼지추론 방식을 제안하고자 한다. 모의실험은 비선형 시스템에 적용하여 제안된 추론방식이 좋은 성능을 나타냄을 보였다.

CBAM 모델에 관한 연구 (A Study on CBAM model)

  • 임용순;이근영
    • 전자공학회논문지B
    • /
    • 제31B권5호
    • /
    • pp.134-140
    • /
    • 1994
  • In this paper, an algorithm of CBAM(Combination Bidirectional Associative Memory) model proposes, analyzes and tests CBAM model `s performancess by simulating with recalls and recognitions of patterns. In learning-procedure each correlation matrix of training patterns is obtained. As each correlation matrix's some elements correspond to juxtaposition, all correlation matrices are merged into one matrix (Combination Correlation Matrix, CCM). In recall-procedure, CCM is decomposed into a number of correlation matrices by spiliting its elements into the number of elements corresponding to all training patterns. Recalled patterns are obtained by multiplying input pattern with all correlation matrices and selecting a pattern which has the smallest value of energy function. By using a CBAM model, we have some advantages. First, all pattern having less than 20% of noise can be recalled. Second, memory capacity of CBAM model, can be further increased to include English alphabets or patterns. Third, learning time of CBAM model can be reduced greatly because of operation to make CCM.

  • PDF

Exploring the Usage of the DEMATEL Method to Analyze the Causal Relations Between the Factors Facilitating Organizational Learning and Knowledge Creation in the Ministry of Education

  • Park, Sun Hyung;Kim, Il Soo;Lim, Seong Bum
    • International Journal of Contents
    • /
    • 제12권4호
    • /
    • pp.31-44
    • /
    • 2016
  • Knowledge creation and management are regarded as critical success factors for an organization's survival in the knowledge era. As a process of knowledge acquisition and sharing, organizational learning mechanisms (OLMs) guide the learning function of organizations represented by its different learning activities. We examined a variety of learning processes that constitute OLMs. In this study, we aimed to capture the process and framework of OLMs and knowledge sharing and acquisition. Factors facilitating OLMs were investigated at three levels: individual, group, and organizational. The concept of an OLM has received some attention in the field of organizational learning, however, the relationship among the factors generating OLMs has not been empirically tested. As part of the ongoing discussion, we attempted a systemic approach for OLMs. OLMs can be represented by factors that are inherent to the organization's system; therefore, prior to empirically testing the OLM generating factor(s), evaluation of its organizational integration is required to determine effective treatment of each factor. Thus, we developed a framework to manage knowledge and proposed a method to numerically evaluate factors influencing the OLMs. Specifically, composite importance (CI) of the Decision-Making Trial and Evaluation Laboratory (DEMATEL) method was applied to explore the interaction effect of these factors based on systemic approach. The augmented matrix thus generated is expected to serve as a stochastic matrix of an absorbing Markov chain.

경량 딥러닝 가속기를 위한 희소 행렬 압축 기법 및 하드웨어 설계 (Sparse Matrix Compression Technique and Hardware Design for Lightweight Deep Learning Accelerators)

  • 김선희;신동엽;임용석
    • 디지털산업정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.53-62
    • /
    • 2021
  • Deep learning models such as convolutional neural networks and recurrent neual networks process a huge amounts of data, so they require a lot of storage and consume a lot of time and power due to memory access. Recently, research is being conducted to reduce memory usage and access by compressing data using the feature that many of deep learning data are highly sparse and localized. In this paper, we propose a compression-decompression method of storing only the non-zero data and the location information of the non-zero data excluding zero data. In order to make the location information of non-zero data, the matrix data is divided into sections uniformly. And whether there is non-zero data in the corresponding section is indicated. In this case, section division is not executed only once, but repeatedly executed, and location information is stored in each step. Therefore, it can be properly compressed according to the ratio and distribution of zero data. In addition, we propose a hardware structure that enables compression and decompression without complex operations. It was designed and verified with Verilog, and it was confirmed that it can be used in hardware deep learning accelerators.

소수 데이터의 신경망 학습에 의한 카메라 보정 (Camera Calibration Using Neural Network with a Small Amount of Data)

  • 도용태
    • 센서학회지
    • /
    • 제28권3호
    • /
    • pp.182-186
    • /
    • 2019
  • When a camera is employed for 3D sensing, accurate camera calibration is vital as it is a prerequisite for the subsequent steps of the sensing process. Camera calibration is usually performed by complex mathematical modeling and geometric analysis. On the other contrary, data learning using an artificial neural network can establish a transformation relation between the 3D space and the 2D camera image without explicit camera modeling. However, a neural network requires a large amount of accurate data for its learning. A significantly large amount of time and work using a precise system setup is needed to collect extensive data accurately in practice. In this study, we propose a two-step neural calibration method that is effective when only a small amount of learning data is available. In the first step, the camera projection transformation matrix is determined using the limited available data. In the second step, the transformation matrix is used for generating a large amount of synthetic data, and the neural network is trained using the generated data. Results of simulation study have shown that the proposed method as valid and effective.