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Abstract

The SVDD(support vector data description) is one of the most well-known one-class support vector learning methods, in which
one tries the strategy of utilizing balls defined on the kernel feature space in order to distinguish a set of normal data from all
other possible abnormal objects. The major concern of this paper is to consider the problem of modifying the SVDD into the
direction of utilizing ellipsoids instead of balls in order to enable better classification performance. After a brief review about the
original SVDD method, this paper establishes a new method utilizing ellipsoids in feature space, and presents a solution in the
form of SDP(semi-definite programming) which is an optimization problem based on linear matrix inequalities.
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1. Introduction

Recently, the support vector learning method has grown up
as a viable tool in the area of intelligent systems.[1,2] Among
the important application areas for the support vector learning,
we have the one-class classification problems.[2,4-10]

In the problems of one-class classification, we are in
general given only the training data for the normal class, and
after the training phase is finished, we are required to decide
whether each test vector belongs to normal class or abnormal
class. The one-class classification problems are often called
outlier detection problems or novelty detection problems.
Obvious examples of this class include the fault detection for
machines and the intrusion detection system for computers.[2]
One of the most well-known support vector learning methods
for the one-class problems is the SVDD(support vector data
description).[4,5] In the SVDD, balls are used for expressing
the region for the normal class. Among the methods related
with SVDD are the nu one-class SVM of Scholkopf et
al.[6,7,8], and the linear programming method of Campbell
and Bennet.[9] Since balls in the input domain can express
only limited class of regions, the SVDD in general enhances
its expressing power by utilizing balls in the feature space
instead of the balls on the input domain. However, recently it
was shown that even with balls on the feature space, the
SVDD still could have some limitations.[9] In this paper, we
try to mitigate this limitation by utilizing ellipsoids defined on
the feature space. The formulation of the presented method is
given in the form of SDP(semi-definite programming), which
belongs to a class of LMi(linear matrix inequality)-based
optimization problems. As is well-known, SDP problems can
be solved efficiently via recently developed interior point
methods.[11,12]

The remaining parts of this paper are given in the
following order: In Section 2, we present preliminaries about
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the SVDD and LMIs. In Section 3, we derive a modification
of the SVDD toward the direction of utilizing ellipsoids and
LMIs. Finally, in Section 4, concluding remarks are given.

2. Preliminaries

The SVDD method, which approximates the existence area
of objects belonging to normal class, is derived as
follows(4,5]: Consider a ball B with the center ¢ €R“¢ and
the radius R, and the training data set D consisting of
objects x;€ R?, i=1, -, N. We should note that since the
training data are usually prone to noise, some part of the
training data D could be abnormal objects. The main idea of
the SVDD is to find a ball that can achieve the two
conflicting goal simultaneously: First, it should be as small as
possible, and more importantly it should contain as many
training data as possible. Obviously, somewhat satisfactory
balls satisfying these multiple objectives may be obtained by
solving the following optimization problem:

min LR, a,€) = R2+c§1 & 1)
s.t. llx;— all? < R+ &, £>0, Vi

Here, the the penalty

associated with the deviation of the -th training pattern
outside the ball. The objective function of the above
optimization problem consists of the two conflicting terms,

slack variable &; represents

i.e., the square of radius R® and the total penalty ﬁ‘éi.

The constant C controls relative importance of each term;
thus called the trade-off constant. The dual problem of the
above can be derived as follows: First by introducing a
Lagranger multiplier for each inequality condition, we obtain
the following Lagrange function:
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L=FR+ Cg\&
+ gl Q'i[(x,'“a)T(xi_a) —RZ_E,']

- gmfi

where ¢;20, 7,20, Vi.

From the saddle point condition[1], the optimal solution of
(1) should satisfy the following:

AL g $hg,
a(Rg) 0: & a; 1.

% =0 a= (Zla,-xi) / Zai =

ﬁ:a’ixi
&

oL 2el0,Cl, Vi. )

og =0

With substitution of the above into L, the Lagrange
function can be expressed in terms of the dual variables:

L= 21 ai<xi,x,«> - g‘ g} a,—a,-(x,-,xﬂ .

where glai=l,ai6[0,c],vi-

Thus, the dual problem can be written as follows:

max , 2:’ @ {x;, x> — g‘ g a;e;{x;, x> 3)

S.t. %0521,(1{5[0,0],\7,1‘.

=1

Note that the above is equivalent to the following
QP(quadratic programming) problem:

min , g ﬁ] a,-a,-(x,»,x,? - 2 a;{x;,%;7 (4)

s. k. ﬁa;=l,ai€[O,C],Vi‘

Also, note that from the Kuhn-Tucker complementarity
condition, the following should hold true:

ﬂi(”xi_KZHZ‘RZ—&):O,Vi (5)

From the above, we can easily show that ultimately only
the data points on the boundary or outside the ball can have
the positive alpha values. These data points are called the
support vectors. Once the @; are obtained via solving the
problem (4), the optimal center is given by the equation (2).
Also, the optimal value of R? is acquired by applying the
condition (5) to support vectors. After the training phase is
over, we decide whether a given test point x= R? belongs
to the normal class utilizing the following criterion:

Ax) = R* = llx—all?
= R — {x,x> 2 glaxx,-,x)
+ él i}aia,(x,,x)
=1 5=
> 0

As mentioned before, balls can express only simple region.
To enable to express more complex region, one can use balls

defined on the feature space F. More precisely, consider the
problem of finding relatively small ball Br C F that can
contain large portion of  the training data
Dp={¢(x)|i=1,--, N} © F. With the arguments used
for the SVDD, we can obtain the following mathematical
formulation:

min , g}l g a;a; K(x;, x;) — g}l a; K(x;, x;) 6)
s.k gai=1,ai6[0,C],Vi.

When the gaussian function is chosen for the kernel, we
always have K(x,x) =1 for each xe R?. Thus, the

above problem can be further simplified as follows:

min , g}\ /ﬁ‘ a;a; K(x;, x;) (7)

s.t. ﬁ‘ar= 1,a,€{0,C], Vi.
Note that in this case, the criterion for the normality can be
summarized as follows

| (%) — all?
= 1—-2 gaiK(xi, x) + gl gK(x,», xj) (8)
< R

Among the important tools of this paper are the linear
matrix  inequalities(LMIs), which mean the inequality
constraints of the form:[11]

A(X) = A0+X1A1+'“+XN14N<O (9)

Here, x = (x;, -, x5 are the unknowns, Ag, ', Ay
are given symmetric matrices, and “ (" stands for the
negative-definiteness. With SDP(semi-definite programming)
problems, we mean the optimization problems having linear
objective function and LMI constraints. SDP problems can be
solved within the prescribed tolerance level by means of
recently developed interior point methods. In the simulation
part of this paper, we used the MATLAB LMI Control
Toolbox[12] for solving SDP problems.

3. Main Results: A Learning Method Utilizing
Ellipsoids and LMIs

As explained in Section 2, we can express shapes more
éomplex than simple balls on the input domain by making use
of the Mercer kernel. However, through many simulation
works, we could observe that there certainly exist some
limitations that cannot be overcome by simply utilizing balls
on the feature space. For example, consider the result shown
in Figure 1, which is yielded by the SVDD wunder the
condition ¢ = 4, C = 3.57. (Note that this kind of example
for an illustration of the problematic aspect of the SVDD was
considered in [10].) This figure shows us the training data on
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Figure 1. A classification result obtained by the SVDD
method

R? together with the region for the normal class yielded by
the Gaussian kernel-based SVDD. In the first look, the region
for the normal class, which has a shape resembling banana,
seems to describe the training data relatively well. However,
with closer look, we can observe that there exists certain kind
of defective unbalance between the areas near inner and outer
surfaces of the banana shape. In other words, the figure
illustrates the defect that could happen when applying the
SVDD approach in the one-class problem; it could accept a
significantly wide area where no training data reside as a
region for the normal class.

In this paper, we try to mitigate this problematic aspect via
a strategy utilizing ellipsoids and LMIs. For this, let us recall
that the SVDD which uses balls on the feature space is
formulated as follows:

min L(R?,a, &) = R2+c§15i

(10)
s.t. llg(x) —all>< RP+ &, £=20, Vi
With the change of variables &2 R®z,,
lg(x;) —al*< R+ &
can be rewritten as
{¢(x)) — @} (RED) M{p(x)) —a)} < 1+2; (1D

Thus, problem (10) can be turned into the following
equivalent form:

min L(R?, a,2) =R+ (CR) g‘ z; (12)

Rl ¢(x,-)—a] >0,220, Vi

s-t. * 1+2,‘

(Here, the star represents the omitted part, which can be
filled utilizing the symmetry of the matrix.)

Note that the first constraint of (12) is just a restatement of
(11) utilizing the Schur complement, which is explained in
[11]. For the modification toward the direction of utilizing
ellipsoids, we make use of positive definite matrix P rather
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than R%7. Then with a slight modification of the objective
function, we can obtain the following new formulation:

min L,P,a,z) = '1]\',' Tr(P) + tg\zi

(13
P ¢(x,~)'—a ) .
st | 4 1z, ]ZO,z‘ZO,‘v’z,P>O.
(Here, Tr represents the trace operator.)
An immediately obvious disadvantage of the above
formulation is that the feature vector ¢(x;) is in general

very high dimensional; thus the number of unknowns getting
huge. To relax this problem, we adopt the so-called empirical
kernel feature map, which was recently proposed by Tsuda et
al. in [13]. Since this concept plays an important role in our
formulation, we describe more details about it. First, consider

a function £~ RY— RY defined as follows:
Kxy, %)

E(x) = e R” (14)

Ry, x)

This function seems to be a good choice for the feature
map because it has the following attractive properties:

(a) Each entry of the feature vector £"(x) has clear

meaning,.

(b) The role of each training data is explicitly shown in
k(%) .

(c) The dimension of the feature vector is not excessively
high.

However, with direct application of the vector (14), the
kernel trick cannot be satisfied as shown below:

B (x), B (%)

k(xy, x)) k(x1, x;)

xw, x) k(xy, xj)
g‘k(xi; xz)k(xl, x,’) .

I

Hence, in order to get an appropriate feature map, we need
to modify adequately. For this modification, we first define
Ke RYY, whose (i,7)-th entry is
Of course, here the function £ should be a

the kernel matrix!)
k(xi, %) .
Mercer kernel satisfying the Mercer condition. In many cases,
the resulting kernel matrix becomes positive definite. Next,

pre-multiply the vector £*(x) defined in (14) by matrix
K2 then we get the following:
k(xy, %)
02K PEG@) =K (15)
kxw, %)

Note that with the above modification, the kernel trick is

1 It is often called as the Gram matrix.



One—Class Support Vector Learning and Linear Matrix Inequalities

now guaranteed as shown below:

Cplx), dlx)> = (K V)Y THK 2R (2 )
= k*(xi)TKilk*(x,‘)
k*(xi)ref

Kxi, x)

The above function ¢: R~ RY in (15) is often called
the empirical feature map. By plugging the empirical feature
map ¢(x) = K 2 £ (%) into (13), our derivation is now
summarized as the following LMI-based optimization problem:

min L, (P, a,z)= LN Tr(P) + t’g z;
12,8
s.t. [P K k("i)—a] >0,

* 1+z; (16)
2,20, Vi,
P>0.

When a test input xe R? is given after the training
phase is over, an obvious choice for the acceptance criterion
of x as a normal object would be

1— (¢(x) —a)"P Y ($(x) — a)
= 1-li¢(x)—al}
= 0.

However, some more flexibility would be possible with the
following one:

fx) = 1+p— K k(%) —all} 20 an

(Here, p> 0 is a constant chosen by users
y

Figure 2. Contours obtained by the method of this paper

For the training data shown in Figure 1, we applied the
method of this paper, and obtained the contour lines of the
decision function f (under the conditions o= 1.5,

C = 0.1) shown in Figure 2. The contours show that with
some more refining process, more meaningful results could
follow.

4. Concluding Remarks

In this paper, we considered the problem of modifying the
SVDD method into the direction that can make use of

ellipsoids rather than simple balls. Along with a brief review
over the conventional SVDD method, we presented a new
method utilizing ellipsoids defined on the feature space and
LMI-based solutions. The work performed in this paper is a
kind of feasibility study toward a new direction; thus lacks
practicality yet, and has a lot of things to be refined.
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