• Title/Summary/Keyword: matrix factorization

Search Result 309, Processing Time 0.043 seconds

Speech Basis Matrix Using Noise Data and NMF-Based Speech Enhancement Scheme (잡음 데이터를 활용한 음성 기저 행렬과 NMF 기반 음성 향상 기법)

  • Kwon, Kisoo;Kim, Hyung Young;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.619-627
    • /
    • 2015
  • This paper presents a speech enhancement method using non-negative matrix factorization (NMF). In the training phase, each basis matrix of source signal is obtained from a proper database, and these basis matrices are utilized for the source separation. In this case, the performance of speech enhancement relies heavily on the basis matrix. The proposed method for which speech basis matrix is made a high reconstruction error for noise signal shows a better performance than the standard NMF which basis matrix is trained independently. For comparison, we propose another method, and evaluate one of previous method. In the experiment result, the performance is evaluated by perceptual evaluation speech quality and signal to distortion ratio, and the proposed method outperformed the other methods.

A Study On Recommend System Using Co-occurrence Matrix and Hadoop Distribution Processing (동시발생 행렬과 하둡 분산처리를 이용한 추천시스템에 관한 연구)

  • Kim, Chang-Bok;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.468-475
    • /
    • 2014
  • The recommend system is getting more difficult real time recommend by lager preference data set, computing power and recommend algorithm. For this reason, recommend system is proceeding actively one's studies toward distribute processing method of large preference data set. This paper studied distribute processing method of large preference data set using hadoop distribute processing platform and mahout machine learning library. The recommend algorithm is used Co-occurrence Matrix similar to item Collaborative Filtering. The Co-occurrence Matrix can do distribute processing by many node of hadoop cluster, and it needs many computation scale but can reduce computation scale by distribute processing. This paper has simplified distribute processing of co-occurrence matrix by changes over from four stage to three stage. As a result, this paper can reduce mapreduce job and can generate recommend file. And it has a fast processing speed, and reduce map output data.

A NMF-Based Speech Enhancement Method Using a Prior Time Varying Information and Gain Function (시간 변화에 따른 사전 정보와 이득 함수를 적용한 NMF 기반 음성 향상 기법)

  • Kwon, Kisoo;Jin, Yu Gwang;Bae, Soo Hyun;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.503-511
    • /
    • 2013
  • This paper presents a speech enhancement method using non-negative matrix factorization. In training phase, we can obtain each basis matrix from speech and specific noise database. After training phase, the noisy signal is separated from the speech and noise estimate using basis matrix in enhancement phase. In order to improve the performance, we model the change of encoding matrix from training phase to enhancement phase using independent Gaussian distribution models, and then use the constraint of the objective function almost same as that of the above Gaussian models. Also, we perform a smoothing operation to the encoding matrix by taking into account previous value. Last, we apply the Log-Spectral Amplitude type algorithm as gain function.

A PRECONDITIONER FOR THE LSQR ALGORITHM

  • Karimi, Saeed;Salkuyeh, Davod Khojasteh;Toutounian, Faezeh
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.213-222
    • /
    • 2008
  • Iterative methods are often suitable for solving least squares problems min$||Ax-b||_2$, where A $\epsilon\;\mathbb{R}^{m{\times}n}$ is large and sparse. The well known LSQR algorithm is among the iterative methods for solving these problems. A good preconditioner is often needed to speedup the LSQR convergence. In this paper we present the numerical experiments of applying a well known preconditioner for the LSQR algorithm. The preconditioner is based on the $A^T$ A-orthogonalization process which furnishes an incomplete upper-lower factorization of the inverse of the normal matrix $A^T$ A. The main advantage of this preconditioner is that we apply only one of the factors as a right preconditioner for the LSQR algorithm applied to the least squares problem min$||Ax-b||_2$. The preconditioner needs only the sparse matrix-vector product operations and significantly reduces the solution time compared to the unpreconditioned iteration. Finally, some numerical experiments on test matrices from Harwell-Boeing collection are presented to show the robustness and efficiency of this preconditioner.

  • PDF

A Jacobian Update-Free Newton's Method for Efficient Real-Time Vehicle Simulation (효율적인 실시간 차량 시뮬레이션을 위한 자코비안 갱신이 불필요한 뉴턴 적분방법)

  • Kang, Jong Su;Lim, Jun Hyun;Bae, Dae Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.337-344
    • /
    • 2014
  • While implicit integration methods such as Newton's method have excellent stability for the analysis of stiff and constrained mechanical systems, they have the drawback that the evaluation and LU-factorization of the system Jacobian matrix required at every time step are time-consuming. This paper proposes a Jacobian update-free Newton's method in order to overcome these defects. Because the motions of all bodies in a vehicle model are limited with respect to the chassis body, the equations are formulated with respect to the moving chassis-body reference frame instead of the fixed inertial reference frame. This makes the system Jacobian remain nearly constant, and thus allows the Newton's method to be free from the Jacobian update. Consequently, the proposed method significantly decreases the computational cost of the vehicle dynamic simulation. This paper provides detailed generalized formulation procedures for the equations of motion, constraint equations, and generalized forces of the proposed method.

An Implementation of Story Path Recommendation System of Interactive Drama Using PCA and NMF (PCA와 NMF를 이용한 대화식 드라마의 스토리 경로 추천 시스템 구현)

  • Lee, Yeon-Chang;Jang, Jae-Hee;Kim, Myung-Gwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • Interactive drama is a story which requires user's free choice and participation. In this study, we grasp user's preference by making training data that utilize characters of interactive drama. Furthermore, we describe process of implementing systems which recommend new users path of stories that correspond with their preference. We used PCA and NMF to extract characteristic of preference. The success rate of recommending was 75% with PCA, while 62.5% with NMF.

Development of Weakly Nonlinear Wave Model and Its Numerical Simulation (약비선형 파랑 모형의 수립 및 수치모의)

  • 이정렬;박찬성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.181-189
    • /
    • 2000
  • A weakly nonlinear mild-slope equation has been derived directly from the continuity equation with the aid of the Galerkin's method. The equation is combined with the momentum equations defined at the mean water level. A single component model has also been obtained in terms of the surface displacement. The linearized form is completely identical with the time-dependent mild-slope equation proposed by Smith and Sprinks(1975). For the verification purposes of the present nonlinear model, the degenerate forms were compared with Airy(1845)'s non-dispersive nonlinear wave equation, classical Boussinesq equation, andsecond¬order permanent Stokes waves. In this study, the present nonlinear wave equations are discretized by the approximate factorization techniques so that a tridiagonal matrix solver is used for each direction. Through the comparison with physical experiments, nonlinear wave model capacity was examined and the overall agreement was obtained.

  • PDF

Research on Business Job Specification through Employment Information Analysis (채용정보 분석을 통한 비즈니스 직무 스펙 연구)

  • Lee, Jong Hwa;Lee, Hyun Kyu
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.271-287
    • /
    • 2022
  • Purpose This research aims to study the changes in recruitment needed for the growth and survival of companies in the rapidly changing industry. In particular, we built a real company's worklist accounting for the rapidly advancing data-driven digital transformation, and presented the capabilities and conditions required for work. Design/methodology/approach we selected 37 jobs based on NCS to develop the employment search requirements by analyzing the business characteristics and work capabilities of the industry and company. The business specification indicators were converted into a matrix through the TF-IDF process, and the NMF algorithm is used to extract the features of each document. Also, the cosine distance measurement method is utilized to determine the similarity of the job specification conditions. Findings Companies tended to prefer "IT competency," which is a specification related to computer use and certification, and "experience competency," which is a specification for experience and internship. In addition, 'foreign language competency' was additionally preferred depending on the job. This analysis and development of job requirements would not only help companies to find the talents but also be useful for the jobseekers to easily decide the priority of their specification activities.

Deep Learning-based Product Recommendation Model for Influencer Marketing (인플루언서를 위한 딥러닝 기반의 제품 추천모델 개발)

  • Song, Hee Seok;Kim, Jae Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.3
    • /
    • pp.43-55
    • /
    • 2022
  • In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.

Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion (가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정)

  • Park, Jong-Seung;Lee, Bum-Jong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.499-506
    • /
    • 2006
  • This Paper describes a fast and stable camera pose estimation method for real-time augmented reality systems. From the feature tracking results of a marker on a single frame, we estimate the camera rotation matrix and the translation vector. For the camera pose estimation, we use the shape factorization method based on the scaled orthographic Projection model. In the scaled orthographic factorization method, all feature points of an object are assumed roughly at the same distance from the camera, which means the selected reference point and the object shape affect the accuracy of the estimation. This paper proposes a flexible and stable selection method for the reference point. Based on the proposed method, we implemented a video augmentation system that inserts virtual 3D objects into the input video frames. Experimental results showed that the proposed camera pose estimation method is fast and robust relative to the previous methods and it is applicable to various augmented reality applications.