• 제목/요약/키워드: matrix crack

검색결과 458건 처리시간 0.025초

이중크랙을 가진 외팔 파이프의 동특성에 미치는 끝단질량과 이동질량의 영향 (Influence of Tip Mass and Moving Mass on Dynamic Behavior of Cantilever Pope with Double-crack)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.483-491
    • /
    • 2005
  • In this paper a dynamic behavior of a double-cracked cantilever pipe with the tip mass and a moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, the tip mass and double cracks have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. Therefore, the cracks are modelled as a rotational spring. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. We investigated about the effect of the two cracks and a tip mass on the dynamic behavior of a cantilever pipe with a moving mass.

부직포가 예각 적층판의 기계적 거동에 미치는 효과 (Effects of Non-Woven Tissue on the Mechanical Behavior of Angle-Ply Laminates)

  • 정성균
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.109-115
    • /
    • 2001
  • This paper investigates the mechanical characteristics of angle-ply laminates with non-woven carbon tissue. The lami- nates were made by inserting non-woven carbon tissue at the interface. Specimens were rounded near the tabs by grinding and polishing to reduce the stress concentration. Cyclic loads were applied to the specimens and the stress and fatigue life curves were obtained. The matrix crack density was also evaluated to check the effects of non-woven carbon tissue on the fracture resistance of composite laminates. C-Sean technique was used to evaluate the delamination, and SEM was used to understand the fracture mechanisms of the laminates. Experimental results show that the fatigue strength and life of composite laminates were increased by inserting non- woven carbon tissues. The results also show that the matrix crack density and delamination area were reduced by inserting non-woven carbon tissues.

  • PDF

금속기복합재료의 피로균열성장거동에 대한 응력비 영향에 관한 연구 (A Study on the Stress Ratio effect of Metal Matrix Composites on Fatigue Crack Growth Behavior)

  • 최용범;허선철;윤한기;박원조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.155-160
    • /
    • 2002
  • Metal matrix composites had generated a lot of interest in recent times because of significant in specific properties. It was also highlighted as the materials of frontier industry because strength, heat-resistant, corrosion-resistant, wear-resistant were superiored. In this study the strength properties of $Al_{18}B_4O_{33}/AC4CH$ were represented mixing the binder of $Al_2O_3$ and $TiO_2$. It was also fabricated by squeeze casting. $Al_{18}B_4O_{33}/AC4CH$ was fabricated at the melt temperature of $760^{\circ}C$ the perform temperature of $700^{\circ}C$ and mold temperature of $200^{\circ}C$ under the pressure of 83.4MPa and observed SEM. Fatigue crack growth rate tests on compact tension specimen(half-size) of thickness 12.5mm were conducted by using sinusoidal waveform. Compact tension specimens(half-size) were used and fatigue crack growth rate da/dN and stress intensity factor range ${\Delta}K$ were analyzed concerning to the R value of 0.1 and 0.05. In order to find out the value of ${\Delta}K$, load amplitude constant method was applied by the standard fatigue testing method describes in ASTM E647-95a. As the results of this study, Fatigue crack growth rate increased with in creasing the load ratio, Consequently, At equivalent stress intensity factors, the fatigue crack growth rates in MMC were faster than those of AC4CH alloy. then the fatigue life and the fatigue crack growth rate was investigated using scanning election microscopy(SEM)

  • PDF

계면균열 문제에 대한 L적분의 응용 (Application of L Integral to Interface Crack Problems)

  • 박재학;엄윤용
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.34-42
    • /
    • 1986
  • 본 논문에서는 균열면이 원호(circular arc)를 이루고, Comninou 모델과 같이 균열면의 일부가 접촉되어 있는 경우 L적분이 적분경로에 무관함을 증명하고 이를 이용하여 재료가 서로 다른 원형 개재물과 기재와의 경계면에 존재하는 계면 균열에서의 응력확대계수를 구하는 방법에 대해 살펴보았다. 기지가 무한 고체이고 접촉역이 작아 접촉역의 존재가 균열선단에서 멀리 떨어진 곳에서의 응력장에 거의 영향을 끼치지 아`는 경우에는 접촉역을 가정하지 않은 문제에 대한 해, 즉 진동특성을 나타내는 해로 부터, L적분의 성질을 이용하여, 접촉역을 가정하였을 때의 응력확대 계수를 간단한 꼴로 표시할 수 있었고, 유한의 기지에 원형 개재물이 존재하는 문제에 대해서는 F.E.M을 사용하여 L적분을 계산함으로써 응력확대계수를 구할 수 있었다.

La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향 (Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties)

  • 강석원;고재웅;김해두
    • 한국세라믹학회지
    • /
    • 제29권1호
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF

구상흑연 주철재의 피로크랙 발생 및 피로강도에 미치는 기지조직의 영향 (Effect of a Matrix Structure on the Initiation of Fatigue Crack and Fatigue Strength in Nodular Graphite Cast Iron)

  • 윤명진;이경모
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.66-71
    • /
    • 1998
  • It is required the superior materials for the parts of machines or structures, which could be endurable in severe load and environment. According to advancement of casting technology, nodular graphite cast iron is used as suitable for such condition. But nodular graphite cast iron is scattering of fatigue strength and low reliability. Therefore in this study, the effect of matrix structure and number of nodular graphite on the initiation of fatigue crack and fatigue strength. It was found that the material which has relatively high ferrite volume fraction was more easily cracked than other materials and fatigue limit was low. The material which has not found pinhole on the surface, the crack was initiated in graphite went through ferrite and propagated into through graphite, but separated graphite and ferrite grain boundary and combined with other cracks to fro large one.

  • PDF

AlN/W계 복합재료의 기계적 특성과 미세구조 (Mechanical Properties and Microstructure of AlN/W Composites)

  • 윤영훈;최성철;박철원
    • 한국세라믹학회지
    • /
    • 제33권1호
    • /
    • pp.83-91
    • /
    • 1996
  • Monolithic AlN and AlN-W composites were fabricated by pressure-less sintering at 190$0^{\circ}C$ under nitrogen atmosphere and the influences of tungsten phase on the microstructure and mechanical properties were investi-gated. In the fabrication of sintered specimen no additive was used. And monolithic AlN showed substantial grain growth and low relative density. AlN-W composites were fully densified and grain growths of matrix were inhibited. The densification behavior of composites were inferred to be achieved through the liquid phase sintering process such as particle-rearrangement and solutino-reprecipitation. Also the oxid phases which is expected to form liquid phases duringsintering process were detected by XRD analysis. As the tungsten volume content increases fracture strength was decreased and fracture toughness was increased. It was suppo-sed that the strength decrease of composites with tungsten content was due to existence of interface phases. The subcritical crack growth behavior was observed from the stress-strain curve of composites. The effect of the secondary phase and interface phases on toughness in crease were studied through observation of crack propagation path and the influence of residual stress on crack propagation was investigated by X-ray residual stress measurement. In the result of residual stress measurement the compressive stress of matrix in composi-test was increased with tungsten volume content and the compressive stress distribution of matrix must have contributed to the inhibition of crack propagation.

  • PDF

유한요소법을 이용한 이동질량 하에 크랙을 갖는 티모센코 보의 동특성 연구 (Dynamic Analysis of the Cracked Timoshenko Beam under a Moving Mass using Finite Element Method)

  • 강환준;이시복;홍금식;전승민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.271-276
    • /
    • 2004
  • In this paper. dynamic behavior of the cracked beam under a moving mass is presented using the finite element method (FEM). Model accuracy is improved with the following consideration: (1) FE model with Timoshenko beam element (2) Additional flexibility matrix due to crack presence (3) Interaction forces between the moving mass and supported beam. The Timoshenko bean model with a two-node finite element is constructed based on Guyan condensation that leads to the results of classical formulations. but in a simple and systematic manner. The cracked section is represented by local flexibility matrix connecting two unchanged beam segments and the crack as modeled a massless rotational spring. The inertia force due to the moving mass is also involved with gravity force equivalent to a moving load. The numerical tests for various mass levels. crack sizes. locations and boundary conditions were performed.

  • PDF

Influence of Tip mass on Dynamic Behavior of Cracked Cantilever Pipe Conveying Fluid with Moving Mass

  • Yoon Han-Ik;Son In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1731-1741
    • /
    • 2005
  • In this paper, we studied about the effect of the open crack and a tip mass on the dynamic behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The cantilever pipe is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the tip-displacement of the cantilever pipe are analytically clarified.

국부적 적층분리결함을 갖는 섬유금속적층판의 기계적 거동 특성 (Mechanical Behavior of Fiber Metal Laminates with Local Delamination Defects)

  • 최흥섭;최형집;최원종;하민수
    • 항공우주시스템공학회지
    • /
    • 제1권1호
    • /
    • pp.25-35
    • /
    • 2007
  • In this paper, the interlaminar crack problems of a fiber metal laminate (FML) under generalized plane deformation are studied using the theory of anisotropic elasticity. The crack is considered to be embedded in the matrix interlaminar region (including adhesive zone and resin rich zone) of the FML. Based on Fourier integral transformation and the stress matrix formulation, the current mixed boundary value problem is reduced to solving a system of Cauchy-type singular integral equations of the 1st kind. Within the theory of linear fracture mechanics, the stress intensity factors are defined on terms of the solutions of integral equations and numerical results are obtained for in-plane normal (mode I) crack surface loading. The effects of location and length of crack in the 3/2 and 2/1 ARALL, GLARE or CARE type FML's on the stress intensity factors are illustrated.

  • PDF