• Title/Summary/Keyword: matrix converter (MC)

Search Result 15, Processing Time 0.025 seconds

A Fault-Tolerant Strategy for Indirect Matrix Converter

  • Tran, Quoc-Hoan;Lee, Hong-Hee;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.283-284
    • /
    • 2013
  • This paper proposes a fault-tolerant strategy for indirect matrix converter (IMC) based on the concept of four-leg matrix converter in case of an open-circuit fault in the inverter stage. The proposed strategy can maintain the same output performance as the healthy condition during the faulty condition. Some simulated results are provided to verify the effectiveness of the proposed strategy.

  • PDF

A Control Strategy Based on Small Signal Model for Three-Phase to Single-Phase Matrix Converters

  • Chen, Si;Ge, Hongjuan;Zhang, Wenbin;Lu, Song
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1456-1467
    • /
    • 2015
  • This paper presents a novel close-loop control scheme based on small signal modeling and weighted composite voltage feedback for a three-phase input and single-phase output Matrix Converter (3-1MC). A small non-polar capacitor is employed as the decoupling unit. The composite voltage weighted by the load voltage and the decoupling unit voltage is used as the feedback value for the voltage controller. Together with the current loop, the dual-loop control is implemented in the 3-1MC. In this paper, the weighted composite voltage expression is derived based on the sinusoidal pulse-width modulation (SPWM) strategy. The switch functions of the 3-1MC are deduced, and the average signal model and small signal model are built. Furthermore, the stability and dynamic performance of the 3-1MC are studied, and simulation and experiment studies are executed. The results show that the control method is effective and feasible. They also show that the design is reasonable and that the operating performance of the 3-1MC is good.

Control and Modulation of Three to Asymmetrical Six-Phase Matrix Converters based on Space Vectors

  • Al-Hitmi, Mohammed A.;Rahman, Khaliqur;Iqbal, Atif;Al-Emadi, Nasser
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.475-486
    • /
    • 2019
  • This paper proposes the modulation and control of a three-to-six-phase matrix converter with an asymmetrical six-phase output. The matrix converter (MC) outputs consist of two sets of three-phase spatially shifted by $30^0$, where the two sets have two isolated neutrals. The space vector approach is considered for the modeling and subsequent modulation of the three-to-six phase MC. The intelligent selection of voltage space vectors is made to synthesize the reference voltages and to obtain a sinusoidal output. The dwell times of selected voltage space vectors are adjusted in such a way that the effect of the second and the third auxiliary plane vectors (i.e., x1-y1, and x2-y2) are nullified. To achieve the maximum output voltage gain and to ensure that no reactive power is drawn from the utility supply, the input side power factor is maintained at unity. Nevertheless, the source side power factor is controllable. The modulation technique is implemented in dSPACE working in conjunction with a FPGA. Hardware results that validate the proposed control algorithm are discussed.

Experimental Realization of Matrix Converter Based Induction Motor Drive under Various Abnormal Voltage Conditions

  • Kumar, Vinod;Bansal, Ramesh Chand;Joshi, Raghuveer Raj
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • While the matrix converter has many advantages that include bi-directional power flow, a size reduction, a long lifetime, and sinusoidal input currents, it is vulnerable to the input voltage disturbances, because it directly exchanges the input voltage to the output voltage. So, in this paper, a critical evaluation of the effect of various abnormal voltage conditions like unbalanced power supply, balanced non-sinusoidal power supply, input voltage sags and short time blackout of power supply on matrix converter fed induction motor drives is presented. The operation under various abnormal conditions has been analyzed. For this, a 230V, 250VA three phase to three phase matrix converter (MC) fed induction motor drive prototype is implemented using DSP based controller and tests have been carried out to evaluate and improve the stability of system under typical abnormal conditions. Digital storage oscilloscope & power quality analyzer are used for experimental observations.

Implementation of Vector control for induction motor using the AC-AC matrix converter (교류-교류 행렬변환기를 이용한 유도전동기의 벡터제어 구현)

  • Kim, Woo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.3-10
    • /
    • 2003
  • Application of matrix converter to vector control of induction motor using simplified Venturini algorithm which is capable of achieving the maximum output voltage is developed. This algorithm simplifies the control algorithm and therefor reduces the digital implementation time. Matrix converter is used as voltage-referenced voltage fed vector controlled induction motor drive. This paper describes the performance of vector controlled induction motor with four quadrant capability employing a matrix converter power circuit. The advantage of this system over the conventional rectifier-inverter arrangement are capability for regeneration into the utility, sinusoidal supply currents and minimum passive components. The steady-state and transient performance of the induction motor drive under the vector control technique is demonstrate with simulation and experiment results.

  • PDF

A New Study on Indirect Vector AC Current Control Method Using a Matrix Converter Fed Induction Motor

  • Lee Hong-Hee;Nguyen Hoang M.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • This paper introduces two different types of AC current control methods for an indirect vector controlled induction motor using a matrix converter. The proposed methods combine the advantages of matrix converters with the advantages of the indirect vector AC current control methods. The first proposed method explains the basic idea of the hysteresis current control method for matrix converters and shows its capability and stability in comparison to the conventional method usually used for VSI. With the aid of the special configuration of the matrix converter, we also propose another current method which is modified from the first one in order to reduce both current ripple and torque ripple. Simulation results have verified the feasibility and the effectiveness of the proposed methods.

Unbalance Control Strategy of Boost Type Three-Phase to Single-Phase Matrix Converters Based on Lyapunov Function

  • Xu, Yu-xiang;Ge, Hong-juan;Guo, Hai
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.89-98
    • /
    • 2019
  • This paper analyzes the input side performance of a conventional three-phase to single-phase matrix converter (3-1MC). It also presents the input-side waveform quality under this topology. The suppression of low-frequency input current harmonics is studied using the 3-1MC plus capacitance compensation unit. The constraint between the modulation function of the output and compensation sides is analyzed, and the relations among the voltage utilization ratio and the output compensation capacitance, filter capacitors and other system parameters are deduced. For a 3-1MC without large-capacity energy storage, the system performance is susceptible to input voltage imbalance. This paper decouples the inner current of the 3-1MC using a Lyapunov function in the input positive and negative sequence bi-coordinate axes. Meanwhile, the outer loop adopts a voltage-weighted synthesis of the output and compensation sides as a cascade of control objects. Experiments show that this strategy suppresses the low-frequency input current harmonics caused by input voltage imbalance, and ensures that the system maintains good static and dynamic performances under input-unbalanced conditions. At the same time, the parameter selection and debugging methods are simple.

Implementation of Direct Torque Control Method using Matrix Converter Fed Induction Motor

  • Lee, Hong-Hee;Nguyen, Hoang M.;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.74-80
    • /
    • 2008
  • This paper develops a direct torque control method (DTC) using a matrix converter fed induction motor. The advantages of matrix converters are combined with the advantages of the DTC technique; under the constraint of the unity input power factor, the required voltage vectors are generated to implement the conventional DTC method of induction motor. The proposed DTC algorithm is applied to induction motors and the experimental results are given in steady-state and transient conditions, while the discussion about the trend of the DTC method using the MC is also carried out. Furthermore, the entire system of the matrix converter configuration using 7.5kW IGBT module is explained in detail.

Simulation of Matrix Converter Using PSIM (PSIM을 이용한 매트릭스 컨버터의 시뮬레이션)

  • Park G.L.;Choi J.H.;Kim T.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.635-638
    • /
    • 2003
  • In the paper, a three-phase-in three-phase-out Matrix Converter(MC) for the PMSM Is simulated by the PSIM simulator. A lighter L-C filters are installed at the input side of the Converter to remove the current harmonics around the switching frequency. In modelling the Matrix Converter, the PSIM is the powerful tool that the basic researches can be quickly performed within the given periods, because the simulation calculation by PSIM is very fast, compared to other simulators such as Matlab, Saber, and Pspice.

  • PDF

A Control Strategy to Obtain Sinusoidal Input Currents of Matrix Converter under Unbalanced Input Voltages

  • Nguyen, Thanh-Luan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.114-116
    • /
    • 2018
  • This paper presents a control strategy to achieve the balanced sinusoidal output currents, as well as sinusoidal input currents for the matrix converter (MC) under unbalanced input voltages. By regulating the modulation index of the converter according to the instantaneous input voltages, the output currents are kept balanced and sinusoidal. In order to obtain sinusoidal input currents, the input power factor angle should be dynamically calculated based on the positive and negative sequence components of the input voltages. This paper proposes a simple method to construct the expected input power factor angle without the complicated sequence component extraction of input voltages. Simulation results are given to validate the effectiveness of the proposed control strategy.

  • PDF