• Title/Summary/Keyword: matrix comparison

Search Result 932, Processing Time 0.031 seconds

A Study on the Composite Strengthening Effect in Metal Matrix Composites (단섬유 금속복합체에서의 복합강화효과에 관한연구)

  • 김홍건
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.61-66
    • /
    • 1996
  • An overall feature to simulate composite behavior and to predict closed solution has been performed for the application to the stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite, the micromechanics analysis and finite element analysis (FEA) were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. Further, a micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites has been developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparions between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.

Comparison of Matrices for Optimal Analysis of Synthetic Polymers Using MALDI-TOF Mass Spectrometry

  • Yoo, Hee-Jin;Kim, Duck-Hyun;Choi, Yoon-Ji;Choi, Jung Hoon;Park, Moonhee;Shin, DongJin;Oh, YoonSeok;Kim, YangSun;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.77-81
    • /
    • 2020
  • Characterization of the various chemical aspects of composite polymers is important for quality control of manufactured polymers. In this study, we compared three suitable matrices (α cyano-4-hydroxycinnamic acid [CHCA], 2,5 dihydroxy benzoic acid [2,5-DHB], and dithranol), to characterize various synthetic polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Although the spectra obtained with the CHCA and 2,5-DHB matrices were generally good, in certain samples ghost peaks disappeared only when dithranol was used as the matrix. Furthermore, we examined the use of sodium trifluoroacetate (NaTFA) as an additive to reduce interference by metals and copolymers in the spectra. In conclusion, appropriate selection of a matrix, according to the characteristics of the polymer, and the use of additives to improve sensitivity are important considerations for polymer analysis and development.

Comparison of deep learning-based autoencoders for recommender systems (오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구)

  • Lee, Hyo Jin;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.329-345
    • /
    • 2021
  • Recommender systems use data from customers to suggest personalized products. The recommender systems can be categorized into three cases; collaborative filtering, contents-based filtering, and hybrid recommender system that combines the first two filtering methods. In this work, we introduce and compare deep learning-based recommender system using autoencoder. Autoencoder is an unsupervised deep learning that can effective solve the problem of sparsity in the data matrix. Five versions of autoencoder-based deep learning models are compared via three real data sets. The first three methods are collaborative filtering and the others are hybrid methods. The data sets are composed of customers' ratings having integer values from one to five. The three data sets are sparse data matrix with many zeroes due to non-responses.

Designing of Surface Comparison Method on Active Site of Enzyme (Enzyme의 활성 사이트 표면 비교기법 설계)

  • Nam Hee Yu;Kwang Su Jung;Keun Ho Ryu;Yong Je Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.279-282
    • /
    • 2008
  • 단백질의 구조는 그 기능과 밀접히 연관되어 있기 때문에 구조에 조금이라도 변화가 생기면 바로 생체기능에 이상이 생긴다. 그래서 단백질 구조연구는 필수적이고 구조의 유사성 검색을 이용하여 단백질 기능을 예측한다. 그러나 전체적인 구조가 유사한 단백질이라도 기능에 중요한 특정구조가 다르게 되면 다른 기능을 수행 할 수 있고 구조가 다른 단백질이라도 핵심 영역의 구조가 유사하다면 유사한 기능을 수행할 수 있다. 이는 단백질의 기능이 특정 하위구조의 잘 보존된 활성 사이트에 따라 결정되기 때문이다. 이 논문은 단백질의 3차원 공간정보를 matrix로 표현 할 수 있는 가장 작은 평면도형인 삼각형을 이용하여 단백질 표면에 대한 상세한 형태비교를 제공한다. 단백질 표면에서 활성 사이트 아미노산 잔기의 side chain은 일반적으로 바깥을 향하여 표면의 형태를 결정짓기 때문에 단백질 표면을 비교하기 위해 side chain 정보가 필수적이다. 우리는 아미노산 잔기의 Cα원자에 side chain을 포함하여 Cα삼각형과 side chain 삼각형 2개를 하나의 특정하위구조 set으로 정의하고 이 하위구조로 distance matrix를 구축한다. 만들어진 distance matrix에 RMSD를 이용하여 활성 사이트의 표면을 비교한다. 제시한 기법은 단백질의 전체적인 서열과 구조 정보를 이용하지 않고, 활성 사이트의 특정하위 영역만을 고려함으로써 더욱 효과적이고 빠른 시간 내에 상세한 비교를 수행할 수 있다.

The General Comparison between Direct Matrix Solvers (직접 행렬해법에 대한 일반적 비교)

  • An B. K.;Park Y. B.;Kim J. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.113-116
    • /
    • 2001
  • Finite element analysis programs have been for metal forming process design They will become more and more important in understanding forming process For large-scale forging analysis problems, the performance of a linear equation solver is very important for the overall efficiency of the analysis code. With problem size increased, the computation time needs to be reduced, which is spent on setting the system of algebraic equations associated with finite element model Many matrix solvers have been developed and used usefully in finite element program for this purpose.

  • PDF

Application of Semi-infinite Boundary Element Method for Tunnel Vibration Analysis (터널 진동해석을 위한 반무한 경계요소법의 적용)

  • 김문겸;이종우;전제성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.128-136
    • /
    • 1994
  • In this study, dynamic boundary element method using mass matrix is derived, using fundamental solutions for the semi-infinite domain. In constituting boundary integral equations for the dynamic equilibrium condition, inertia term in the form of domain integral is transformed into boundary integral form. Corresponding system equations are derived, and a boundary element program is developed. In addition, equations for free vibration is formulated, and eigenvalue analysis is performed. The results from the dynamic boundary element analysis for a tunnel problem are compared with those from the finite element analysis. According to the comparison, boundary element method using mass matrix is consistent with the results of finite element method. Consequently, in tunnel vibration problems, it results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed.

  • PDF

Application of Virtual SEA for the Prediction of Acoustic Performance of Cockpit (칵핏 흡차음 성능 예측을 위한 Virtual SEA 의 활용)

  • Jeong, Won-Tae;Ko, Chang-Sung;Park, Hyung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.903-912
    • /
    • 2007
  • One of the crucial factors which determine the quality and the accuracy of SEA model is how subsystems are defined. Experimental SEA technique had been a unique way to divide entire systems accurately for mid-frequency range, until FEA based virtual FRF response technique, virtual SEA method presented. Virtaul SEA has been developed for predictive SEA tool in early design process. In this study, Modal analysis results from modified crash FE model is used for Statistical transfer matrix. Observation nodes on the cockpit are grouped by attractive substructuring method based on point to point transfer and correlation matrix. Complex cockpit structure is divided into subsystems by automatic substructuring. Comparison with experimental SEA results validates the application of Virtual SEA to cockpit.

  • PDF

Comparison of Matrix Exponential Methods for Fuel Burnup Calculations

  • Oh, Hyung-Suk;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7.

  • PDF

Interfacial Properties of Polypropylene Fiber in High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 복합체 내에서 폴리프로필렌 섬유의 계면 부착성능)

  • Han Byung-Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.108-111
    • /
    • 2004
  • The polypropylene(PP) fiber is poised as a low cost alternative for reinforcement in structural applications in comparison with other high performance fibers, such as the polyvinyl-alcohol(PVA), polyethylene, carbon and aramid fiber. The mechanical properties of the composite are strongly determined by the interfacial behavior of fiber and cementitious matrix. The crack bridging mechanism contribute to composite toughness from activation of the fiber-matrix interface where energy is dissipated through debonding of the interface and fiber pullout. In this study, therefore, the pullout behavior of PP fibers is investigated. Experimental work includes the investigation of the interfacial properties, and the composite property. The quantification of interfacial properties, the frictional bond is achieved through single fiber pullout test. A study on the effect of inclination angle on fiber pullout behavior is also conducted.

  • PDF