• Title/Summary/Keyword: mathematical understanding

Search Result 1,034, Processing Time 0.02 seconds

Features of sample concepts in the probability and statistics chapters of Korean mathematics textbooks of grades 1-12 (초.중.고등학교 확률과 통계 단원에 나타난 표본개념에 대한 분석)

  • Lee, Young-Ha;Shin, Sou-Yeong
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.4
    • /
    • pp.327-344
    • /
    • 2011
  • This study is the first step for us toward improving high school students' capability of statistical inferences, such as obtaining and interpreting the confidence interval on the population mean that is currently learned in high school. We suggest 5 underlying concepts of 'discretion of contingency and inevitability', 'discretion of induction and deduction', 'likelihood principle', 'variability of a statistic' and 'statistical model', those are necessary to appreciate statistical inferences as a reliable arguing tools in spite of its occasional erroneous conclusions. We assume those 5 concepts above are to be gradually developing in their school periods and Korean mathematics textbooks of grades 1-12 were analyzed. Followings were found. For the right choice of solving methodology of the given problem, no elementary textbook but a few high school textbooks describe its difference between the contingent circumstance and the inevitable one. Formal definitions of population and sample are not introduced until high school grades, so that the developments of critical thoughts on the reliability of inductive reasoning could not be observed. On the contrary of it, strong emphasis lies on the calculation stuff of the sample data without any inference on the population prospective based upon the sample. Instead of the representative properties of a random sample, more emphasis lies on how to get a random sample. As a result of it, the fact that 'the random variability of the value of a statistic which is calculated from the sample ought to be inherited from the randomness of the sample' could neither be noticed nor be explained as well. No comparative descriptions on the statistical inferences against the mathematical(deductive) reasoning were found. Few explanations on the likelihood principle and its probabilistic applications in accordance with students' cognitive developmental growth were found. It was hard to find the explanation of a random variability of statistics and on the existence of its sampling distribution. It is worthwhile to explain it because, nevertheless obtaining the sampling distribution of a particular statistic, like a sample mean, is a very difficult job, mere noticing its existence may cause a drastic change of understanding in a statistical inference.

  • PDF

Study on the Analysis and Evaluation of 'Observation and Recommendation Letter by Teacher' Which is Utilized in Mathematically Gifted Elementary Students Screening (초등수학영재 선발전형에 활용되는 교사 관찰 추천서의 분석 및 평가에 관한 연구)

  • Kim, Jong Jun;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.229-250
    • /
    • 2013
  • The purpose of this study is analyzing 'observation and recommendation letter by teacher', which is being submitted to screen and enhance the utilization of gifted students in accordance with recently introduced gifted students observation, recommendation and screening system. For the purpose, this study will provide with objective securing plan of 'observation and recommendation letter by teacher' by developing an optimum evaluation model. The research findings were as follows: First, the result of analysis on the mathematically gifted students behavior characteristic as appeared in 'observation and recommendation letter by teacher' suggested that the recommending teachers have the tendency of giving superficial statement instead of giving concrete case description. When it was analyzed for frequency by the 'observation and recommendation letter by teacher' analysis framework devised by the author, the teachers showed the tendency of concentrating on specific questions. Meanwhile, there was a tendency that teachers concentrate on specific gifted behavior characteristic or area for which concrete case had been suggested. The reason is believed that such part is easy to observe and state while others are not, or, teachers did not judge the other part as the characteristic of gifted students. Second, the gifted students behavior characteristics as appeared in 'observation and recommendation letter by teacher' were made into scores by Rubric model. When the interrater reliability was analyzed based on these scores, the correlation coefficient of 1st scoring was .641. After a discussion session was taken and 2nd scoring was done 3 weeks later, the correlation coefficient of 2nd scoring increased to .732. The reason is believed that; i) the severity among scorers was adjusted by the discussion session after the 1st scoring, ii) the scorers established detail judgment standard on various situations which can appear because of the descriptive nature, and, (iii) they found a consensus on scoring for a new situation appeared. It implies that thorough understanding and application of scorers on evaluation model is as important as the development of optimum model for the differentiation of mathematically gifted elementary students.

A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment (창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.333-357
    • /
    • 2014
  • This study resulted from a study regarding creative STEAM System based upon an experiment with the center of gravity. The results of the study are constructed by a fusion of mathematics and physics, showing that they are the same as mathematical calculations. Also, students can find that center of gravity of an object is in equilibrium on a metal rod when the center of gravity exactly is placed on the rod. The fact that an experimental results are correspond to calculations can maximize the effectiveness of teaching. And also this study has the following effectiveness. First, the exact construction and calculations arouses good competition among students. Second, this experiment can give students a motivation for study and increase their thinking in classes because the theoretical background of center of gravity experiment is basically attributed to math and science classes in school. This study includes three different types of center-of-gravity experiments. One is a simple type of experiment in which center of gravity exists inside of an object. Another is a complicated one in which the center of gravity is also inside of an object. However, the third type is an experiment in where the center of gravity is outside of an object. Therefore, it gives students an opportunity to discuss how to confirm equilibrium on a metal rod when the object has its center of gravity outside. Having discussions in class will allow students to have a critical way of thinking. In addition, searching for a way to solve a problem will increase creativity of students as well. And the last type is finding the center of gravity of a big acrylic panel where multiple objects are on the panel. According to the survey and interview conducted by students who participated in this program, teaching based on creative STEAM system helps students to get a better understanding and more fast acquisition of knowledge. We can expect that a well-planned creative STEAM system through a continuous study will be both effective and efficient in educating critical and creative students.

  • PDF

Survey of elementary school teachers' perceptions of the 2022 revised mathematics curriculum (2022 개정 수학과 교육과정에 대한 초등학교 교사들의 인식 조사)

  • Kwon, Jeom-rae
    • Education of Primary School Mathematics
    • /
    • v.27 no.2
    • /
    • pp.111-137
    • /
    • 2024
  • The purpose of this study is to identify the expected difficulties and necessary support when applying the 2022 revised mathematics curriculum to elementary schools, and to support the establishment of the field. To this end, we explored the major changes in the 2022 revised mathematics curriculum, and based on this, we conducted a survey of elementary school teachers to identify the expected difficulties and necessary support when applying it in the field. In particular, when analyzing the results, we also examined whether there were any differences in the expected difficulties and necessary support depending on the size of the school where it is located and the teaching experience of the teacher. The research results are as follows. First, the proportion of teachers who expect difficulties in applying the 2022 revised mathematics curriculum was mostly below 50%, but the proportion of teachers who demand support was much higher, at around 80%. Second, the difficulty of elementary school teachers in applying the 2022 revised mathematics curriculum was found to be the greatest in evaluation. Third, in relation to the use of edutech, teachers in elementary schools are also expected to have difficulties in teaching and learning methods to foster students' digital literacy, assessment using teaching materials or engineering tools, and assessment in online environments. Fourth, the difficulty of elementary school teachers in applying the 2022 revised mathematics curriculum was also significant in relation to mathematics subject competencies. Fifth, it was found that there is also difficulty in understanding the major changes of the achievement standards, including the addition, deletion, and adjustment of the achievement standards, and the impact on the learning of other achievement standards. Finally, the responses of elementary school teachers to the expected difficulties and necessary support in applying the 2022 revised mathematics curriculum did not differ depending on the size of the school where it is located, but statistically significant differences were found in a number of items depending on the teaching experience of the teacher. Based on these research results, we hope that various support will be provided for the 2022 revised mathematics curriculum, which will be applied annually from 2024.