• Title/Summary/Keyword: mathematical symbol

Search Result 152, Processing Time 0.022 seconds

A Study on the Meaning of Geometric Analysis of Gameun Temple's Taegeuk Shapes (감은사 태극문양의 기하학적 의미 연구)

  • Kim, Il-Hwan;Park, Tae-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.435-444
    • /
    • 2021
  • This paper discusses the geometrical interpretation of the Taegeuk Shapes of Kameun Temple through the geometric analysis of mathematics. Based on the literature, This paper attempted to clarify that the origin of Gameunsa's founding of the spirit of patriotism may coincide with historical records through historical literature and geometric meaning. First, the background of the founding of Kameun temple, geographical location located near the East Sea, especially the history of the ancient Chinese mathematics at the time, And that mathematical knowledge influenced all fields such as agriculture, architecture, and art. Secondly, it is related to the historical record as the space of about 60 centimeters, which is uniquely underground, was identified as the structure of the excavated space. It is thought that there is a strong correlation with the origin that the King Munmu changed into a dragon, and set up the temple to be able to stay. Based on these, the clues of the interpretation of the taegeuk and the triangular pattern were searched in the samcheon yanggi(參天兩地) of the Oriental and circumference of the Western. The taegeuk and triangular patterns represent the symbols of yin-yang harmony, which correspond to the origin of its creation. the Korean people regarded the mysterious dragon as a symbol of yinyang harmony. In conclusion the Shapes of Kameun temple's stone is consistent with the contents mentioned in the historical record.

A Study of the Representation in the Elementary Mathematical Problem-Solving Process (초등 수학 문제해결 과정에 사용되는 표현 방법에 대한 연구)

  • Kim, Yu-Jung;Paik, Seok-Yoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.9 no.2
    • /
    • pp.85-110
    • /
    • 2005
  • The purpose of this study is to examine the characteristics of visual representation used in problem solving process and examine the representation types the students used to successfully solve the problem and focus on systematizing the visual representation method using the condition students suggest in the problems. To achieve the goal of this study, following questions have been raised. (1) what characteristic does the representation the elementary school students used in the process of solving a math problem possess? (2) what types of representation did students use in order to successfully solve elementary math problem? 240 4th graders attending J Elementary School located in Seoul participated in this study. Qualitative methodology was used for data analysis, and the analysis suggested representation method the students use in problem solving process and then suggested the representation that can successfully solve five different problems. The results of the study as follow. First, the students are not familiar with representing with various methods in the problem solving process. Students tend to solve the problem using equations rather than drawing a diagram when they can not find a word that gives a hint to draw a diagram. The method students used to restate the problem was mostly rewriting the problem, and they could not utilize a table that is essential in solving the problem. Thus, various errors were found. Students did not simplify the complicated problem to find the pattern to solve the problem. Second, the image and strategy created as the problem was read and the affected greatly in solving the problem. The first image created as the problem was read made students to draw different diagram and make them choose different strategies. The study showed the importance of first image by most of the students who do not pass the trial and error step and use the strategy they chose first. Third, the students who successfully solved the problems do not solely depend on the equation but put them in the form which information are decoded. They do not write difficult equation that they can not solve, but put them into a simplified equation that know to solve the problem. On fraction problems, they draw a diagram to solve the problem without calculation, Fourth, the students who. successfully solved the problem drew clear diagram that can be understood with intuition. By representing visually, unnecessary information were omitted and used simple image were drawn using symbol or lines, and to clarify the relationship between the information, numeric explanation was added. In addition, they restricted use of complicated motion line and dividing line, proper noun in the word problems were not changed into abbreviation or symbols to clearly restate the problem. Adding additional information was useful source in solving the problem.

  • PDF