• Title/Summary/Keyword: mathematical structures

Search Result 937, Processing Time 0.023 seconds

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Fault Tolerance Operation and Characteristics Analysis of Asymmetric Six-phase Permanent Magnet Synchronous Motor According to Switch Open (비대칭 6상 영구자석 동기 전동기의 스위치 개방에 따른 특성 분석 및 고장허용운전)

  • Jun, So-Young;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1003-1008
    • /
    • 2022
  • This paper proposes a method related to fault tolerance operation and characteristic analysis of asymmetric 6-phase permanent magnet synchronous motor. In general, motor drive systems with multi-phase structures can be continuously operated despite a reduction of power and speed by using a phase changeover or control techniques according to the failures. As a result, it is widely used in industrial fields such as aviation and defense, which require high efficiency and high reliability. In this paper, the second order ripple of the electrical fundamental freuqnecy occurs in the dq-axis currents of the synchronous coordinate system through mathematical analysis according to the switch open of the dual 3-phase inverter. Therefore, the fault tolerant operation method is presented by applying the fault detection method with a constant cycle for continuous operations. The effectiveness of the proposed fault tolerance operation method is verified through the several experiments.

Optimization of static response of laminated composite plate using nonlinear FEM and ANOVA Taguchi method

  • Pratyush Kumar Sahu;Trupti Ranjan Mahapatra;Sanjib Jaypuria;Debadutta Mishra
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.625-639
    • /
    • 2023
  • In this paper, a Taguchi-based finite element method (FEM) has been proposed and implemented to assess optimal design parameters for minimum static deflection in laminated composite plate. An orthodox mathematical model (based on higher-order shear deformation plate theory and Green-Lagrange geometrical nonlinearity) has been used to compute the nonlinear central deflection values of laminated composite plates according to Taguchi design of experiment via a self-developed MATLAB computer code. The lay-up scheme, aspect ratio, thickness ratio and the support conditions of the laminated composite plate structure were designated as the governable design parameters. Analysis of variance (ANOVA) is used to investigate the effect of diverse control factors on the nonlinear static responses. Moreover, regression model is developed for predicting the desired responses. The ANOVA revealed that the lay-up scheme alongside the support condition plays vital role in minimizing the central deflection values of laminated composite plate under uniformly distributed load. The conformity test results of Taguchi analysis are also in good agreement with the numerical experimentation results.

Topology optimization with functionally graded multi-material for elastic buckling criteria

  • Minh-Ngoc Nguyen;Dongkyu Lee;Joowon Kang;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.33-51
    • /
    • 2023
  • This research presents a multi-material topology optimization for functionally graded material (FGM) and nonFGM with elastic buckling criteria. The elastic buckling based multi-material topology optimization of functionally graded steels (FGSs) uses a Jacobi scheme and a Method of Moving Asymptotes (MMA) as an expansion to revise the design variables shown first. Moreover, mathematical expressions for modified interpolation materials in the buckling framework are also described in detail. A Solid Isotropic Material with Penalization (SIMP) as well as a modified penalizing material model is utilized. Based on this investigation on the buckling constraint with homogenization material properties, this method for determining optimal shape is presented under buckling constraint parameters with non-homogenization material properties. For optimal problems, minimizing structural compliance like as an objective function is related to a given material volume and a buckling load factor. In this study, conflicts between structural stiffness and stability which cause an unfavorable effect on the performance of existing optimization procedures are reduced. A few structural design features illustrate the effectiveness and adjustability of an approach and provide some ideas for further expansions.

Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions

  • Asteris, Panagiotis G.;Maraveas, Chrysanthos;Chountalas, Athanasios T.;Sophianopoulos, Dimitrios S.;Alam, Naveed
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.769-788
    • /
    • 2022
  • In this paper a mathematical model for the prediction of the fire resistance of slim-floor steel beams based on an Artificial Neural Network modeling procedure is presented. The artificial neural network models are trained and tested using an analytical database compiled for this purpose from analytical results based on FEM. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against analytical results, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the fire resistance of slim-floor steel beams. Moreover, based on the optimum developed AN model a closed-form equation for the estimation of fire resistance is derived, which can prove a useful tool for researchers and engineers, while at the same time can effectively support the teaching of this subject at an academic level.

Frequency response of elastic nanocomposite beams containing nanoparticles based on sinusoidal shear deformation beam theory

  • Hou, Suxia;Wu, Shengbin;Luo, Jijun;Nasihatgozar, Mohsen;Behshad, Amir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • Improving the mechanical properties of concrete in the construction industry in order to increase resistance to dynamic and static loads is one of the essential topics for researchers. In this work, vibration analysis of elastic nanocomposite beams reinforced by nanoparticles based on mathematical model is presented. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-anak model model is utilized for obtaining the effective properties of the strucuture including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the elastic nanocomposite beam is obtanied by analytical method. The aim of this work is investigating the effects of nanoparticles volume percent and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the nanoparticles volume percent, the frequency is increased. In addition, the water absorption of the concrete is presented in this article.

Multi-spectral adaptive vibration suppression of two-path active mounting systems with multi-NLMS algorithms

  • Yang Qiu;Dongwoo Hong;Byeongil Kim
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.393-402
    • /
    • 2023
  • Recently, hybrid and electric vehicles have been actively developed to replace internal combustion engine (ICE) vehicles. However, their vibrations and noise with complex spectra cause discomfort to drivers. To reduce the vibrations transmitted through primary excitation sources such as powertrains, structural changes have been introduced. However, the interference among different parts is a limitation. Thus, active mounting systems based on smart materials have been actively investigated to overcome these limitations. This study focuses on diminishing the source movement when a structure with two active mounting systems is excited to a single sinusoidal and a multi-frequency signal, which were investigated for source movement reduction. The overall structure was modeled based on the lumped parameter method. Active vibration control was implemented based on the modeled structure, and a multi-normalization least mean square (NLMS) algorithm was used to obtain the control input for the active mounting system. Furthermore, the performance of the NLMS algorithm was compared with that of the quantification method to demonstrate the performance of active vibration control. The results demonstrate that the vibration attenuation performance of the source component was improved.

Shear mechanical behavior of prefabricated and assembled multi-key group stud connectors

  • Liang Fan;Wen Zeng;Wenhao Zhao;Mengting Wang
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.9-24
    • /
    • 2024
  • In order to study the shear mechanical behavior of prefabricated and assembled multi-key group stud connectors, this paper conducted push-out tests on 10 prefabricated and assembled multi-key group stud connectors, distributed in 5 groups, and detailed the failure modes of each specimen. Based on the finite element software, a total of 22 models of this type of stud connector are established, and validated the finite element models using the push-out tests. Furthermore, the effects of stud diameter, number of key groups, and spacing of key groups on the shear resistance of prefabricated and assembled multi-key group stud connectors are analyzed. Combined with the test and finite element, the force analysis is carried out for the stud and first-pouring and post-pouring concrete. The results show that the spacing and number of key groups have a significant impact on the shear capacity and shear stiffness of the specimen. For a single stud, the shear force is transferred to the surrounding concrete via the stud's root. When the stud is finally cut, the steel and the concrete plate are separated. Under vertical shear force, the top row of studs experiences the highest shear, while the middle row has the least. Based on statistical regression, a formula of assembled multi-key group stud connectors is proposed.

Research on three-point bending fatigue life and damage mechanism of aluminum foam sandwich panel

  • Wei Xiao;Huihui Wang;Xuding Song
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Aluminum foams sandwich panel (AFSP) has been used in engineering field, where cyclic loading is used in most of the applications. In this paper, the fatigue life of AFSP prepared by the bonding method was investigated through a three-point bending test. The mathematical statistics method was used to analyze the influence of different plate thicknesses and core densities on the bending fatigue life. The macroscopic fatigue failure modes and damage mechanisms were observed by scanning electron microscopy (SEM). The results indicate that panel thickness and core layer density have a significant influence on the bending fatigue life of AFSP and their dispersion. The damage mechanism of fatigue failure to cells in aluminum foam is that the initial fatigue crack begins the cell wall, the thinnest position of the cell wall or the intersection of the cell wall and the cell ridge, where stress concentrations are more likely to occur. The fatigue failure of aluminum foam core usually starts from the semi-closed unit of the lower layer, and the fatigue crack propagates layer by layer along the direction of the maximum shear stress. The results can provide a reference for the practical engineering design and application of AFSP.