Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.4.555

Frequency response of elastic nanocomposite beams containing nanoparticles based on sinusoidal shear deformation beam theory  

Hou, Suxia (Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University)
Wu, Shengbin (Center of Modern Educational Technology, Guizhou University of Finance and Economics)
Luo, Jijun (Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University)
Nasihatgozar, Mohsen (Department of Mechanical Engineering, Kashan Branch, Islamic Azad University)
Behshad, Amir (Faculty of Technology and Mining, Yasouj University)
Publication Information
Steel and Composite Structures / v.45, no.4, 2022 , pp. 555-562 More about this Journal
Abstract
Improving the mechanical properties of concrete in the construction industry in order to increase resistance to dynamic and static loads is one of the essential topics for researchers. In this work, vibration analysis of elastic nanocomposite beams reinforced by nanoparticles based on mathematical model is presented. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-anak model model is utilized for obtaining the effective properties of the strucuture including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the elastic nanocomposite beam is obtanied by analytical method. The aim of this work is investigating the effects of nanoparticles volume percent and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the nanoparticles volume percent, the frequency is increased. In addition, the water absorption of the concrete is presented in this article.
Keywords
analytical method; beam; frequency response; nanoparticles; SSDBT;
Citations & Related Records
Times Cited By KSCI : 32  (Citation Analysis)
연도 인용수 순위
1 Naseri Taheri, M., Sabet, S.A. and Kolahchi, R. (2020), "Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core", Smart Struct. Syst., 25(3), 337-343. https://doi.org/10.12989/sss.2020.25.3.337.   DOI
2 Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.   DOI
3 Yang, Y. and Li, H. (2020), "Experimental study on shear behaviors of Partial Precast Steel Reinforced Concrete beams", Steel Compos. Struct., 37(5), 605-620. http://dx.doi.org/10.12989/scs.2020.37.5.605.   DOI
4 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A., (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mat., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.   DOI
5 Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nanoparticles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.   DOI
6 Zamani, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.   DOI
7 Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H. and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mat., https://doi.org/10.1177/1099636217743288.   DOI
8 Jafari Natanzi, A., Soleimani Jafari, G. and Kolahchi, R. (2018), "Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation", Comput. Concrete, 21(5), 569-582. https://doi.org/10.12989/cac.2018.21.5.569.   DOI
9 Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-220. https://doi.org/10.12989/scs.2018.28.2.195.   DOI
10 Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concrete Construct., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.   DOI
11 Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. ttps://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
12 Kolahchi, R. (2017a), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.   DOI
13 Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 24, 643-662.   DOI
14 Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concrete, 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361.   DOI
15 Akarsh, P.K., Shrinidhi, D., Marathe, S.H. and Kumar Bhat, A. (2022), "Graphene oxide as nano-material in developing sustainable concrete - A brief review", Mat. Today: Proceed., 60,234-246. https://doi.org/10.1016/j.matpr.2021.12.510.   DOI
16 Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solids. 82, 104010.   DOI
17 ASTM C293 (2001), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading), ASTM, Philadelphia, PA.
18 Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022a), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave Rand. Complex. Media.
19 ASTM C150 (2001), Standard Specification for Portland Cement, Annual Book of ASTM Standards, ASTM, Philadelphia.
20 Akarsh, P.K., Marathe, S.H. and Kumar Bhat, A. (2020), "Influence of graphene oxide on properties of concrete in the presence of silica fumes and M-sand", Construct. Build. Mat., 268,121093. https://doi.org/10.1016/j.conbuildmat.2020.121093.   DOI
21 Al-Furjan, M.S.H., Yang, Y., Farrokhian, G.S., Shen, X., Kolahchi, R. and Rajak, D.K. (2022b), "Dynamic instability of nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43, 282-298. https://doi.org/10.1002/pc.26373.   DOI
22 Kolahchi, R., Arbabi, A. and Rabani Bidgoli, M. (2020b), "Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete", Smart Struct. Syst., 25(1), 97-104. https://doi.org/10.12989/sss.2020.25.1.097.   DOI
23 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A.H. (2017b), "Wave propagation of embedded viscoelastic FGCNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci. 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.   DOI
24 Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2018), "A numerical method for magnetohygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Mathemat. Applicat., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.   DOI
25 Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020a). "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656, https://doi.org/10.1016/j.ast.2019.105656.   DOI
26 Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.   DOI
27 Al-Furjan, M., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp Sci Technol. 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.   DOI
28 Azmi, M., Kolahchi, R. and Rabani Bidgoli, M. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concrete Construct., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051.   DOI
29 Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.   DOI
30 Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Mousavi Panah, S.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237.   DOI
31 Al-Furjan, M.S.H., Shan, L., Shen, X., Zarei, M.S., Hajmohammad, M.H. and Kolahchi, R. (2022d), "A Review on Fabrication Techniques and Tensile Properties of Glass, Carbon, and Kevlar Fiber Reinforced Polymer Composites", J. Mat. Res. Tech., 19, 2930-2959. https://doi.org/10.1016/j.jmrt.2022.06.008.   DOI
32 Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", ThinWall. Struct. 163, 107706.https://doi.org/10.1016/j.tws.2021.107706.   DOI
33 Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.   DOI
34 Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Wall. Struct., 154, 106820.   DOI
35 Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally gradedcarbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636217720373.   DOI
36 Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Computat. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.   DOI
37 Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos. https://doi.org/10.1002/pc.26118.   DOI
38 Mosharrafian, F. and Kolahchi, R. (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes", Struct. Eng. Mech., 58(5), 931-947. https://doi.org/10.12989/sem.2016.58.5.931.   DOI
39 Seo, Y.S., Jeong, W.B.,Yoo, W.S. and Jeong, H.K. (2015), "Frequency response analysis of cylindrical shells conveying fluid using finite element method", J. Mech. Sci. Tech., 19, 625-633. https://doi.org/10.1007/BF02916184.   DOI
40 Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials", Compos. Sci. Tech., 61, 759-769, https://doi.org/10.1016/S0266-3538(01)00014-8.   DOI
41 Jamnam, S., Maho, B., Techaphatthanakon, A., Ruttanapun,, C., Aemlaor, P., Zhang, H. and Sukontasukkul, P. (2022), "Effect of graphene oxide nanoparticles on blast load resistance of steel fiber reinforced concrete", Construct. Build. Mat., 343, 128139. https://doi.org/10.1016/j.conbuildmat.2022.128139.   DOI
42 Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018c), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.   DOI
43 Yaylaci, U., Yaylaci, E., Olmez, M. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25, 551-563. https://doi.org/10.12989/cac.2020.25.6.551.   DOI
44 Yaylaci, M. and Mehmet, A. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26, 107-114. https://doi.org/10.12989/cac.2020.26.2.000.   DOI
45 Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct. 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.   DOI
46 Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019b), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene plateletreinforced piezoelectric layers", J. Sandw. Struct. Mat., https://doi.org/10.1177/1099636219839175.   DOI
47 Heidarzadeh, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Concrete Pipes Reinforced with AL2O3 Nanoparticles Considering Agglomeration: Magneto-Thermo-Mechanical Stress Analysis", Int. J. Civ. Eng., 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2.   DOI
48 Intarabut, D., Sukontasukkul, P., Phoo-ngernkham, T., Zhang, H., Yoo, D.Y., Limkatanyu, S. and Chindaprasirt, P. (2022), "Influence of graphene oxide nanoparticles on bond-slip reponses between fiber and geopolymer mortar", Nanomat., 12, 943-955. https://doi.org/10.3390/nano12060943.   DOI
49 Jassas, M.R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Forced vibration analysis of concrete plates reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.   DOI
50 Henkhaus, K., Pujol, S. and Ramirez, J. (2013), "Axial failure of reinforced concrete beams damaged by shear reversals", J. Struct. Eng., 73, 1172-1180. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000673.   DOI
51 Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded laminated porous concrete beams armed with carbon nanotubes", Comput. Concr., 17, 567-578.   DOI
52 Jamali, M., Shojaee, T., Kolahch,i R. and Mohammadi, B. (2016), "Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials", Steel Compos. Struct., 22 (3), 691-712. https://doi.org/10.12989/scs.2016.22.3.691.   DOI
53 Bakhshande Amnieh. H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater. 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.   DOI
54 Faramoushjan, S.G., Jalalifar, H. and Kolahchi, R. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concrete Construct., 11(6), 521-529. https://doi.org/10.12989/acc.2021.11.6.521.   DOI
55 Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.   DOI
56 Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018b), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Advan. Nano Res., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299.   DOI
57 Javani, R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419.   DOI
58 Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.   DOI
59 Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21, 431-440. https://doi.org/10.12989/cac.2018.21.4.431.   DOI
60 Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213 . https://doi.org/10.1016/j.ijmecsci.2018.01.026 .   DOI
61 Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.   DOI
62 Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FGCNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.   DOI
63 Zheng, W., Chen, W.G., Feng, T., Li, W.Q., Liu, X.T., Dong, L.L. and Fu, Y.Q. (2019), "Enhancing chloride ion penetration resistance into concrete by using graphene oxide reinforced waterborne epoxy coating", Prog. Organic Coat., 138, 105389. https://doi.org/10.1016/j.porgcoat.2019.105389.   DOI
64 Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.   DOI
65 Al-Furjan, M.S.H., Yin, C., Shen, X., Kolahchi, R., Zarei, M.S. and Hajmohammad, M.H. (2022c), "Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate", Mech. Syst. Signal Proces., 178, 109269. https://doi.org/10.1016/j.ymssp.2022.109269.   DOI
66 Al-Furjan, M.S.H., Shan, L., Shen, X., Kolahchi, R. and Rajak, D.K. (2022e), "Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories", Thin-Wall. Struct., 178, 109495. https://doi.org/10.1016/j.tws.2022.109495.   DOI
67 Al-Furjan, M.S.H., Kong, X.S., Shan, L., Soleimani Jafari, G., Farrokhian, A., Kolahchi, R. and Rajak, D.K. (2022f), "Influence of LPRE on the size-dependent phase velocity of sandwich beam including FG porous and smart nanocomposite layers", Polym. Compos., https://doi.org/10.1002/pc.26820.   DOI
68 Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021b), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloys. Compund., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.   DOI
69 Al-Furjan, M., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021c), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Europ. J. Mech-A/Solids, 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.   DOI
70 Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis", Wind Sstruct., 24(5), 431-446. https://doi.org/10.12989/was.2017.24.5.431.   DOI